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Abstract

Nondeterministic Lisp is a simple extension of Lisp which provides automatic
backtracking. Nondeterminism allows concise description of many search tasks which
form the basis of much Al research. This paper discusses SCREAMER, an efficient im-
plementation of nondeterministic Lisp as a fully portable extension of ComMmMON Lisp.
In this paper we present the basic nondeterministic LisP constructs, motivate the
utility of the language via numerous short examples, and discuss the compilation
techniques.
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1 Introduction

Nondeterminism is a useful programming paradigm popularized by PROLOG. It has long
been established in programming language folklore that nondeterminism simplifies the task
of writing combinatorial search programs. While straightforward blind search techniques
normally associated with nondeterministic programming may not yield acceptable perfor-
mance, nonetheless the simple task of specifying a combinatorial search space, for smaller
more tractable problems, is almost always easier when one avails oneself of nondeterministic
constructs than when one uses more conventional programming techniques.

Nondeterminism however, need not remain the sole province of logic programming lan-
guages. Any programming language can be extended to support nondeterministic search
with the addition of two new constructs: a choice point operator and a failure operator. We
have done precisely this for Lisp. This paper describes SCREAMER, our implementation of
nondeterministic COMMON LisP. Nondeterministic LISP is not new (cf. McCarthy 1963,
Clinger 1982, Chapman 1985, Zabih 1987, Zabih et al. 1987, Haynes 1987). What is new
with our work however, is a portable and efficient implementation. Most prior imple-
mentations were complete custom implementations of a nondeterministic evaluator. In
contrast, SCREAMER is implemented as a fully portable macro package which can run
under any implementation of COMMON LisP. This allows SCREAMER programs to inter-
operate in the same environment as other COMMON LISP programs and to leverage off of
the rich set of programming language features and the comprehensive programming envi-
ronments available with COMMON LiSP. Furthermore—for reasons to be discussed later in
the paper—prior implementations were inefficient. This inefficiency precluded using these
implementations for practical programming. SCREAMER on the other hand, has been in
regular use by numerous people for several years now, both as a basis for teaching Al and
as a substrate supporting current Al research. This paper focuses on three topics. First, it
proposes nondeterminism as a useful and expressive construct which encourages a simpler
and clearer programming style in Lisp. We will attempt to illustrate this via numerous ex-
amples. Second, it contrasts nondeterministic LiSP with PROLOG, illustrating some ways
that the former is more expressive than the latter. Finally, it discusses the compilation
techniques which allow SCREAMER to generate efficient code.

2 Nondeterministic Lisp

At its core, SCREAMER adds only two new constructs to COMMON LiSP. The macro either
nondeterministically evaluates one of an arbitrary number of subexpressions and returns
the result. Operationally, this can be viewed as introducing a choice-point. The expres-
sion (either e; ey...¢,) first evaluates e¢; and returns its result. If the computation
fails—either during the evaluation of e; or during subsequent computation using the value
produced by e;—the computation backtracks to evaluate e; and return its value instead.
Failures are introduced by calling the function fail, the second primitive construct pro-
vided by SCREAMER. Repeated failures cause the evaluation of subsequent subexpres-
sions in the dynamically nested either expression until no further subexpressions remain.
Choice-points are dynamically nested. Failing to a choice-point whose alternatives are
exhausted will propagate to the next most recent choice-point.



The utility of these two constructs is illustrated by the following example. The following
function nondeterministically returns an integer between the given bounds. (This function
is so ubiquitous that it is built into SCREAMER.)

(defun an-integer-between (low high)
(if (> low high) (fail))
(either low (an-integer-between (1+ low) high)))

Given the nondeterministic function an-integer-between, one can write the following
procedure to find Pythagorean triples.

(defun pythagorean-triples (n)
(all-values
(let ((a (an-integer-between 1 n))
(b (an-integer-between 1 n))
(¢ (an-integer-between 1 n)))
(unless (= (+ (x a a) (xb b)) (xc c)) (fail))
(list a b c))))

This procedure deterministically returns a list of all Pythagorean triples of integers be-
tween 1 and n. This example introduces all-values, another primitive construct pro-
vided by SCREAMER. All-values repeatedly evaluates the nondeterministic expression
in its body gathering all of its values into a list which is returned deterministically. It
is thus analogous to the bag-of primitive in PROLOG. SCREAMER also provides a sim-
ilar primitive, one-value, which deterministically returns only the first value computed
by its nondeterministic body.! One-value is similar in many ways to the cut primitive in
PRrROLOG.

The previous example illustrates a typical nondeterministic programming cliché, namely
generate-and-test. The calls to an-integer-between constitute the generator? while the
expression

(unless ... (fail))

constitutes the test. While it is easy to formulate generate-and-test procedures in non-
deterministic LISP, such procedures are often inefficient. Nondeterministic constructs like
either and fail, however, are more general, and support many other more efficient pro-
gramming clichés. Consider for example, the N-Queens problem. A generate-and-test
solution would first generate arrangements containing N queens and then filter out those
arrangements where some queen was under attack. A more efficient solution would inter-
leave the generate and test phases, testing each queen for attacks as it was placed. The
code in figure 1 illustrates how this can be formulated in nondeterministic Lisp.

!ScrREAMER adopts a depth-first left-to-right traversal of the search tree when enumerating values of
nondeterministic expressions. Thus all-values and one-value have well-defined denotations. Further-
more, users can (and often must) rely on divergence properties of the search order when writing SCREAMER
programs which specify infinite search trees.

2We adopt the (unenforced) convention that the names of all generator functions begin with the prefix
a- or an-.



(defun attacks? (qi qj distance)
(or (= qi qj) (= (abs (- qi qj)) distance)))

(defun check-queens (queen queens &optional (distance 1))
(unless (null queens)
(if (attacks? queen (first queens) distance) (fail))
(check-queens queen (rest queens) (1+ distance))))

(defun n-queens (n &optional queens)
(if (= (length queens) n)
queens
(let ((queen (an-integer-between 1 n)))
(check-queens queen queens)
(n-queens n (cons queen queens)))))

Figure 1: A SCREAMER program for solving the N-Queens problem.

3 Combinatorial Programming

Many programming tasks involve enumerating the elements of a combinatorial structure
such as the subsets or partitions of a given set. While enumerating large combinato-
rial structures may be intractable, many practical programming tasks require enumerating
small combinatorial structures. For such tasks, the prime problem is one of programming
convenience, not efficiency. Writing correct combinatorial programs can be an arduous, er-
ror prone task. We claim that nondeterministic LISP allows more transparent specification
of combinatorial programs yielding programs which are easier to write, understand, and
debug than equivalent deterministic functional programs. We offer the following examples
in support of this claim.

Consider the task of enumerating the power set of a given set. This can be accomplished
by the following function which nondeterministically returns a subset of a given set.

(defun a-subset-of (x)
(if (null x)
nil
(let ((y (a-subset-of (rest x)))) (either (cons (first x) y) y))))
Given the above function, the power set of  can be computed by evaluating

(all-values (a-subset-of z)).

Or consider the task of enumerating the set of all partitions of a given set. To solve this task
we first must define the following function which nondeterministically returns a member of
a given set. (Again, this function is so ubiquitous that it is built into SCREAMER.)

(defun a-member-of (x)
(if (null x) (fail))
(either (first x) (a-member-of (rest x))))



As an aside, a-member-of and all-values are duals of each other. A-member-of converts
a spatial representation of a set of choices into a temporal one based on backtracking,
while all-values converts the temporal backtracking representation of a set of choices
into a list represented spatially. Given the function a-member-of, the following function
nondeterministically returns a partition of a given set.

(defun a-partition-of (x)
(if (null x)
nil
(let ((y (a-partition-of (rest x))))
(either (cons (list (first x)) y)
(let ((z (a-member-of y)))
(cons (cons (first x) z)
(remove z y :test #’eq :count 1)))))))

This function operates by taking the elements of z, one at a time, and nondeterministically
either placing them in a new partition or in one of the existing partitions.

4 Local Side Effects

All of the examples presented so far could have been written in PROLOG. While we believe
that nondeterministic functional programs demonstrate their intent more clearly than their
logic program counterparts, the primitives added by SCREAMER, namely either, fail,
all-values, one-value, and for-effects all have analogs in PROLOG. In this section
we discuss one further primitive construct added by SCREAMER which has no analog in
PROLOG: local side effects.

Adding nondeterminism to LISP raises an important design decision: should side effects
be undone upon backtracking? It turns out that it is useful to have two types of side
effects, those that are undone upon backtracking and those that are not. SCREAMER
supports both types under user control. The former are termed local side effects while the
latter are termed global. Global side effects are useful for gathering statistics about a search
process, or for passing information between different branches of a search tree that may
aid in pruning future branches. This section will demonstrate the expressive programming
power afforded by local side effects.

Consider the problem of enumerating all simple paths between two vertices in a directed
graph. A simple path is one which does not visit any vertex more than once. Solving this
task will require keeping track of which vertices have been visited in the path currently
being constructed. This can be accomplished most efficiently by associating a visited? flag
with each vertex. Paths are enumerated by starting with the empty path emanating from
the source vertex and continually augmenting this path with a neighbor of the vertex
currently at the head of the path, until the path contains the sink vertex. Choosing which
vertex to add to the path may be nondeterministic since a given vertex may have more
than one neighbor. As a vertex is added to the current path, its visited? flag is set.
A path cannot be augmented with a vertex whose visited? flag is already set. Setting
the visited? flag must be performed by local side effect to allow proper enumeration of
alternate paths by backtracking. The above algorithm is captured by the following function
which nondeterministically returns a simple path from vertex u to v.



(defstruct (node (:conc-name nil)) next-nodes (visited? nil))

(defun simple-path (u v)
(if (visited? u) (fail))
(local (setf (visited? u) t))
(either (progn (unless (eq u v) (fail)) (list u))
(cons u (simple-path (a-member-of (next-nodes u)) v))))

The efficiency of this algorithm depends crucially on the ability to check and update the
visited? status of a vertex in constant time. Without local side effects this could be
done in linear time, by passing around a list of visited vertices and continually checking for
membership in that list, or in logarithmic time, by using balanced binary trees to represent
the visited vertex list, but not in constant time. The important point here is that the
solution based on local side effects is both more efficient and more transparent than either
solution not using side effects. PROLOG—]lacking the capability for local side effects—could
express only the inelegant solutions not using side effects.

One may raise an objection to the above claim that PROLOG lacks the capability for
local side effects. Unification of logic variables provides a form of local side effect. Using
extra-logical extensions to PROLOG, one could implement a visited? flag as an unbound
logic variable. Binding that variable would set the visited? flag, while checking whether
it was bound could be accomplished via the extra-logical var primitive. This solution—
while of dubious clarity—still does not afford the full generality of local side effects in
SCREAMER. PROLOG logic variables are single assignment while SCREAMER allows re-
peated local side effects to the same variable. The following example illustrates the utility
of multiple assignment local side effects.

Let us define a k-simple path as one which does not contain any vertex more than
k times. Consider the task of enumerating all k-simple paths between two vertices in a
graph for some fixed k. This can be accomplished by maintaining a visits count for each
vertex instead of a visited? flag, incrementing that count each time the vertex is added
to the path, and checking that the count is less than & before adding it to the path. This
algorithm is illustrated by the following code fragment.

(defstruct (node (:conc-name nil)) next-nodes (visits 0))

(defun k-simple-path (u v k)
(if (= (visits u) k) (fail))
(local (incf (visits u)))
(either (progn (unless (eq u v) (fail)) (list u))
(cons u (k-simple-path (a-member-of (next-nodes u)) v k))))

Note that this algorithm will require multiple assignment local side effects to the visits
count and thus could not be accomplished as efficiently or transparently in PROLOG.
Also note that—as the above examples demonstrate—SCREAMER supports local side
effects not only to variables but also to slots of data structures created by defstruct. The
SCREAMER local side effect mechanism is productive in that it applies to all side effects
which can be introduced with setf and setq including, for example, side effects performed
on array elements, hash tables, and CLOS instance slots. Furthermore, a SCREAMER



local declaration declares all side effect expressions nested lexically in its body to be
local, including those introduced implicitly via macros. This allows one to use existing
COMMON LISP iteration macros—such as dolist—within nondeterministic expressions,
simply by wrapping a call to the iteration macro with local to convert the side effects to
the iteration variable into local ones. Thus the following expression takes a list of lists [,
and nondeterministically returns a list containing one element from each list.

(let ((a nil))
(local (dolist (x 1) (push (a-member-of x) a)))
(reverse a))

This all points to a methodological bias of our work. PROLOG and COMMON LISP
provide orthogonal sets of features. On one hand, PROLOG provides nondeterminism,
unification, logic variables, and pattern directed invocation, useful features lacking in
CoMMON LisP. On the other hand, CoMMON LISP provides numerous useful features
lacking in PROLOG, most notably data structures and iteration. Rather than arguing for
the merits of one language over the other, a language merging the features of both PRoLOG
and COMMON LISP would be better than either in isolation. Such a language can be arrived
at either by adding the missing features of COMMON LISP into PROLOG or vice versa. We
have adopted the latter tactic in our work. A key claim whose validity is demonstrated by
our work is that it is possible to add nondeterminism to COMMON LISP in a way which is
fully portable across all COMMON LiISP implementations, does not require any modification
to the underlying implementation, and does not suffer performance penalties. The next sec-
tion illustrates how this is accomplished. A companion paper (Siskind and McAllester 1993)
demonstrates how to add unification and logic variables—as well as a complete constraint
logic programming package—on top of this basic facility supporting nondeterminism.

5 Implementation

In languages with nondeterminism and automatic backtracking, the occurrence of a failure
may require restarting the computation at a point which is no longer on the traditional
control stack. Thus, backtracking requires the maintenance of failure continuations. This
would be straightforward in a language with first class continuations, such as SCHEME or
SML. Since COMMON LISP does not have first class continuations, we construct continu-
ations by performing CPS conversion on SCREAMER programs. For example, SCREAMER
converts the following definition for a-member-of

(defun a-member-of (x)
(if (null x) (fail))
(either (first x) (a-member-of (rest x))))

into the following CPS converted form.



(defvar *fail* #’(lambda () (error "Top level fail')))
(defun fail () (funcall *failx*))

(defun a-member-of (¢ x)

(if (null x) (fail))

(let ((*fail* #’(lambda () (a-member-of ¢ (rest x)))))
(funcall ¢ (first x))))

Note that the continuation is the first argument to allow nondeterministic functions full
use of COMMON LISP argument passing capabilities. Naive CPS conversion introduces a
large number of lexical closures not present in the original code. This can result in a severe
performance penalty. Accordingly, SCREAMER takes great pains to use CPS conversion
sparingly. The SCREAMER implementation does a global static analysis to find code frag-
ments which are provably deterministic and avoids CPS converting those fragments. In
general it is not possible to statically determine whether or not a given code fragment is
deterministic. Therefore, SCREAMER conservatively finds only a subset of the deterministic
code fragments. One can apply varying degrees of sophistication in identifying determin-
istic code fragments. Considerable effort has been invested to provide SCREAMER with
powerful but efficient static analysis.

In spite of the fact that SCREAMER’s compilation techniques require global analysis,
SCREAMER does support incremental redefinition of procedures. SCREAMER maintains a
who-calls database to identify those code blocks requiring recompilation. Thus if f, g, and &
are initially deterministic—and f calls ¢ which in turn calls hA—redefining & to be nondeter-
ministic will cause SCREAMER to automatically recompile f and g as well, after performing
the appropriate CPS conversion. The full paper will explain both the static analysis and
incremental recompilation in greater detail.

6 Related Work

Nondeterministic LISP is not new. The addition of a nondeterministic choice operator
(sometimes called amb or choose) to LisP dates back to McCarthy (1963). Clinger (1982)
discusses the difficulties involved in giving a formal semantics to a nondeterministic choice
operator in LisP. (Chapman unpublished) describes DEPENDENCY DIRECTED LISP (also
known as DDL), an implementation of nondeterministic LISP used to implement TWEAK
(Chapman 1985), a non-linear constraint-posting planner. DDL recorded dependency infor-
mation during execution to support selective backtracking. Zabih (1987) and Zabih et al.
(1987) describe SCHEMER, an interpreter for nondeterministic SCHEME that recorded and
analyzed dependency information to perform both selective backtracking and lateral prun-
ing. SCHEMER and DDL were both interpreters to support retaining the dependency infor-
mation needed for intelligent backtracking. Haynes (1987) describes how a nondeterministic
choice operator can be added to SCHEME using the call/cc function.

The techniques used for implementing backtracking in SCREAMER are analogous to
those used when compiling PROLOG into Lisp (Kahn 1982, 1983, Kahn and Carrlson 1984,
Siskind 1989). CPS conversion was used in the RABBIT compiler for SCHEME (Steele and Suss-
man 1976, Steele 1976, 1978).



7  Summary

Prior implementations of nondeterministic LISP were too inefficient to be used for practi-
cal applications. SCREAMER remedies this inefficiency by making several design decisions
differently than prior implementations. First, SCREAMER operates as a COMMON LISP
source to source transform allowing the resulting COMMON LISP code generated by the
CPS converter to be compiled by the underlying COMMON LISP implementation. In con-
trast, most prior implementations were interpreters. Second, SCREAMER foregoes intelli-
gent backtracking in favor of chronological backtracking. Experience has shown that the
overhead of maintaining dependencies to support intelligent backtracking costs far more
than the computation saved in most practical applications. We believe that chronological
backtracking—represented via nondeterminism—is a useful programming paradigm when
used properly. It is an important control construct which adds significant expressive power
to COMMON LiSsP, making programs easier to write, debug, and understand.

We have demonstrated the power of SCREAMER by using it as a vehicle for teaching
6.824 and CIS520, the graduate core Al courses at M. I. T. and the University of Penn-
sylvania. As problem sets in these courses, students have used SCREAMER to build small
working versions of a number of programs which have been the focus of Al research in the
past and present. These problem sets and other AI course material based on SCREAMER
includes crossword puzzle solvers, Waltz line labeling, Allen’s temporal logic, hardware
fault diagnosis, A* search, linear and non-linear planners, natural language query proces-
sors based on Montague grammar, PROLOG interpreters and compilers, theorem provers
based on semantic tableaux, congruence closure, resolution, and PROLOG technology, Rete,
qualitative simulation, robot path planning, and model-based vision. All of these examples
can be written much more clearly and concisely using nondeterministic constructs than
without. Furthermore, researchers at M. I. T., the University of Pennsylvania, and several
other institutions world-wide have begun using SCREAMER as part of their ongoing research
programming activity.

The current version of SCREAMER is available by anonymous FTP from the file
ftp.ai.mit.edu:/com/ftp/pub/screamer.tar.Z. We encourage you to obtain a copy
of SCREAMER and give us feedback on your experiences using it.
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