Screaming Yellow Zonkers

Jeffrey Mark Siskind*

M. I. T. Artificial Intelligence Laboratory
545 Technology Square, Room NE43-800b
Cambridge MA 02139
617/253-5659
internet: Qobi@AL.MIT.EDU

DRAFT of Sunday, 29-September—1991 11:32:08 EDT

Abstract

Nondeterministic LisP is a variant of Lisp with a nondeterministic choice operator. This manual
describes an efficient implementation of nondeterministic Lisp called SCREAMER. SCREAMER is
implemented as a fully portable macro package built on top of CoMMON LiSP. SCREAMER functions
inter-operate in the same environment as ordinary Lisp functions and a large subset of COMMON Lisp
is available when writing SCREAMER functions. In addition to the nondeterministic choice operator,
SCREAMER provides a forward checking constraint propagation facility as well. Together they make
SCREAMER an efficient mechanism for building search programs.

TOPIC AREAS: nondeterministic search, Al programming languages

Caution! This product may drive you zonkers!
From the box of Screaming Yellow Zonkers

1 Introduction

2 Nondeterministic Expressions, Functions and Contexts

In order to provide the ability for backtracking, SCREAMER compiles nondeterministic functions dif-
ferently than deterministic functions. Accordingly, it also compiles calls to nondeterministic functions
differently than calls to deterministic functions. For the most part the user need not be aware of this
difference as SCREAMER automatically determines whether or not a function is deterministic and com-
piles code appropriately. There are certain restriction however. In order to explain these restrictions
some terminology must be defined.

A deterministic expression is an expression which SCREAMER can determine to yield at most one
value. A nondeterministic expression is an expression which SCREAMER cannot determine to be de-
terministic. An expression might yield no more than one value when actually evaluated and still be
classified as nondeterministic if SCREAMER cannot determine at compile time that it is deterministic.
SCREAMER classifies the following expressions as deterministic:

*Need thanks.

A call to the map-values primitive.

e A call to the one-value primitive provided that the default-expression is either absent or a deter-
ministic expression.

e A call to the all-values primitive.

e A call to the ith-value primitive provided both that the argument ¢ is a deterministic expression
and that the the argument default-expression is either absent or a deterministic expression.

e A call to the print-values primitive.

e A function special form. The expression #’(lambda (...) ...) always yields a single value and
is thus deterministic even though that value may itself be a nondeterministic function object. This
will be the case if one of the expressions in the body of the lambda expression is nondeterminis-
tic. Likewise, the expression #’ function-name always is deterministic. It will evaluate to yield a
nondeterministic function object if function-name names a nondeterministic function.

e An either special form with no arguments.
e An either special form with a single deterministic argument.

e A special form or a call to a deterministic function provided that every evaluated subexpression is
deterministic.

A determunistic functionis a function which SCREAMER can determine to yield at most one value when
called. A nondeterministic functionis a function which SCREAMER cannot determine to be deterministic.
Like expressions, a function might yield no more than one value when actually called and still be
classified as nondeterministic if SCREAMER cannot determine at compile time that it is deterministic.
Nondeterministic functions, like deterministic functions, are defined with the CoMMON LISP primitive
defun. A function defined with defun is deterministic if every expression in its body is deterministic;
otherwise the function is nondeterministic. Furthermore, all primitive CoMMON Lisp functions are
deterministic.

CoMMON LisP allows one to access function objects using the function special form. CoMMoON Lisp
function objects always refer to deterministic functions and are termed deterministic function ob-
jects. SCREAMER supports a new type of object, the nondeterministic function object. The expression
#’(lambda (...) ...) will (deterministically) evaluate to yield an ordinary ComMoN Lisp determin-
istic function object if every expression in the body of the lambda expression is deterministic. It will
(deterministically) evaluate to yield a nondeterministic function object if some expression in the body of
the lambda expression is nondeterministic. Likewise, the expression #’ function-name will (deterministi-
cally) evaluate to yield an ordinary CoMMON LIsP deterministic function object if function-name names
a deterministic function. Tt will (deterministically) evaluate to yield a nondeterministic function object
if function-name names a nondeterministic function (defined using defun). The SCREAMER primitive
nondeterministic-function? can be used to determine whether or not an object 1s a nondetermin-
istic function. While deterministic function objects can be called using the CoOMMON LISP primitives
funcall and apply, nondeterministic function objects must be called using the analogous SCREAMER
primitives funcall-nondeterministic and apply-nondeterministic. Attempting to call a nondeter-
ministic function object with funcall or apply will signal a run time error. The SCREAMER calling
primitives accept either deterministic or nondeterministic function objects. Irrespective of whether the
function argument to funcall-nondeterministic or apply-nondeterministic is a deterministic or
nondeterministic function object, a call to funcall-nondeterministic or apply-nondeterministic

is always a nondeterministic expression since it is impossible; in general, to determine the type of the
function argument at compile time.
SCREAMER includes several nondeterministic functions as primitives. These include:

e funcall-nondeterministic
e apply-nondeterministic

e member-of,

e integer—-between,

e decide,

e linear-force,

e divide-and-conquer-force,
e solution and

e best-value.

(Actually, decide and best-value are macros.) The manual entries in this document explicitly annotate
when a primitive is nondeterministic in the first line of the entry for that primitive. Primitives not
annotated as nondeterministic are deterministic.

A mentioned previously, SCREAMER must compile nondeterministic expressions specially. It does
so by walking the code and performing an operation known as CPS conversion on nondeterministic
expressions (see section 14). SCREAMER only walks code appearing in certain contexts. The main
implication of this is that nondeterministic expression may appear only in contexts which SCREAMER
walks. These contexts are termed nondeterministic contexts. A context which SCREAMER does not walk
is termed a deterministic context. The following is a list of all nondeterministic contexts:

e The body of defun. This is accomplished by having SCREAMER shadow the ordinary definition of
defun.

e The expression argument of a call to the map-values primitive.
e The expression argument of a call to the one-value primitive.
e The body of a call to the all-values primitive.

e The expression argument of a call to the ith-value primitive.
e The body of a call to the print-values primitive.

Currently, the only top-level defining expression which allows a nondeterministic body is defun. This
excludes other defining expressions such as defvar, defconstant, defparameter, defmacro, defstruct,
defclass, and particularly defmethod. Future implementations of SCREAMER may support additional
defining expressions beyond defun. The general rule i1s simply:

Nondeterministic expressions must appear in nondeterministic contexts.

A run time or compile time error should be signalled if this rule is violated.

Since, the CoMMON LisP primitive eval is a deterministic function, it can only evaluate lists rep-
resenting deterministic expressions. Like any call to a deterministic function, the argument to eval
can be a nondeterministic expression, but the argument cannot evaluate to a list which represents a
nondeterministic expression. This implies that you may not type a nondeterministic expression directly
to a Lisp listener. To evaluate a nondeterministic expression, convert it to a deterministic expression by
enclosing it in one of the primitives map-values, one-value, all-values, ith-value or print-values.

The current implementation imposes one further restriction. The initialization expressions for &aux,
&optional and &key variables appearing in a lambda list for a defun or lambda expression are considered
deterministic contexts. Thus such initialization expressions may not be nondeterministic. A future
version of SCREAMER may remove this restriction.

3 Side Effects

Adding nondeterminism to an imperative language like CoMMON LisP offers two design alternatives for
side effects. Should side effects be undone upon backtracking? SCREAMER supports both alternatives
since both turn out to be useful. Local side effects are undone upon backtracking while global side
effects are not. SCREAMER provides two new special forms, local and global, which control whether
side effects are local or global. The expression (local (setf x 0)) causes a local side effect to =z,
while (global (setf x 0)) causes a global side effect.

The code generated for global side effects consists of ordinary CoOMMON LisP side effects. Local side
effects generate code which first stores the prior value of the variable on a trail before updating the
variable, and then restoring the prior value when backtracking. This has two implications. First, one
can only perform a local side effect on a variable that is bound. SCREAMER cannot perform a local side
effect on an unbound variable since 1t will not be able to access and store the prior value of the variable.
Second, local side effects can be performed only when there is at least one choice point on the choice
point stack, since the portion of the trail to be unwound upon backtracking is kept as part of a choice
point. Depending on the COMMON LisP implementation, an error may or may not be generated if these
restrictions are violated.

Local and global special forms behave like progn. They allow a body consisting of several expres-
sions, returning the value of the last expression. All setf and setq operations that are lexically nested
in a local or global expression generate side effects of the appropriate type. Furthermore, local and
global expressions may be nested inside one another. In this case, the most closely nested local or
global expressions determines whether a setf or setq causes a local or global side effect. Finally,
setf and setq expression which are not nested in either a local or global expression cause global side
effects. Thus the side effects to y and w in the following will be local, while the side effects to v and z
will be global.

(defun £ (x u) (setf v u))

(local (if (p x)
(setf y (f x 1))
(global (setf z (f x 2))))
(setq w (£f x 3)))

Note that a local or global expression affects only side effects that are lexically nested in that expression
and not side effects in functions called by those expressions. Thus the side effect to v inside f is always
a global side effect, even when f is called from inside a local expression.

Local and global expression affect any side effect caused by a lexically nested setq or setf expres-
sion. Side effects caused by other CoMMON LISP primitives are always global. Thus (local (delete x y))

will cause a global side effect not a local one.! Local and global do however, affect macros which expand
into setq or setf expressions. COMMON LISP contains a number of side effect primitives implemented
as macros. These include psetq, psetf, shiftf, rotatef, incf, decf, push, pushnew and pop. Ac-
cording to the COMMON LISP spec, the expansion of primitive macros is allowed to be implementation
dependent.? Thus some implementations may expand primitive side effect macros, either directly or
indirectly into expressions containing setf or setq expressions. In those implementations, calls to
CoMMON Lisp primitive side effect macros will be affected by surrounding local and global expres-
sions. In other implementations, calls to primitive side effect macros do not expand into expressions
containing setf and setq and thus cause global side effects irrespective of their context.?

SCREAMER supports local side effects to generalized variables using setf. Thus it is possible to
write expressions like (local (setf (car x)) y) and (local (setf (aref x n)) y) and achieve
the expected results. When evaluating an expression like (local (setf v e)), SCREAMER may ac-
cess v several times, once to trail its value prior to the local side effect and twice per backtrack,
once to update its value and once to restore its prior value. SCREAMER takes care to evaluate any
subexpressions in v only once and use the result of that evaluation for all such accesses. Local side
effects are supported for any setf method including slot accessors created by defstruct and defclass.
There is one minor exception however. While it is possible to do local side effects on hash tables,
i.e. (local (setf (gethash key table) value)), SCREAMER is not able to distinguish between the
situation where table lacked an entry for key prior to the local side effect and the situation where the
entry for key was nil. In either case, table will have an entry pairing key with nil after backtracking.
The reason for this is that when SCREAMER evaluates (gethash key table) to access its value prior
to the local side effect, it utilizes only the first value returned by gethash. In both cases this value is
nil. SCREAMER is not able to utilize the second value returned by gethash which would differentiate
these situations.

One must be careful using iteration constructs containing nondeterministic expressions. These in-
clude the CoMMON LISP primitives do, do*, dolist, dotimes, do-all-symbols, do—external-symbols,
do-symbols and loop as well as the iterate macro. Such macros usually perform side effect during the
iteration. The desired iteration behavior over a nondeterministic body usually requires the side effects
to be local. It may be possible to get the correct behavior by wrapping the looping expression inside
a local expression though for reasons described above, whether this works or not is implementation
dependent.

Local side effects interact with SCREAMER primitives like all-values in predictable ways which may
appear counterintuitive at first glance. Local side effect performed inside the body of an all-values
expression are undone upon exit from the all-values expression. One may try unsuccessfully to use
the following code to produce a list of all bit strings of length n.

(all-values (local (loop for i from O below n collect (either 0 1))))

The above code does not produce the desired result, even for an implementation which makes all side
effects caused by loop to be local, since collect adds each new element to the list being generated by
side effecting the tail of that list. If such side effects were local, the constructed list would be unavailable
for use upon exiting the all-values expression.

L Technically, the CoMMON LIsP definition allows an implementation to in-line expand a call to a primitive such as
delete. Furthermore, in some implementations, the function macroexpand performs in-line substitution, even though
this is not allowed by the CoMMON LIsP spec. On an implementation which exhibited both of these flaws, local and
global expressions could affect in-line expanded calls to COMMON LIsP side effect primitives such as delete. I know of no
implementation which suffers from this problem.

2In my opinion this is a flaw in the design of CoMMON LiIsP for reasons made apparent in this paragraph.

3The Symbolics implementation behaves like the former while the Lucid implementation behaves partially like the
former and partially like the later. In Lucid, side effect macros expand into setq when called on variables but not
when called on generalized variables. Thus expressions like (local (push a x)) cause local side effects while ones like
(local (push a (aref x n))) cause global side effects. This is an unfortunate screw.

4 Gotchas

5 The Constraint Package

It is often said that PROLOG added two innovations to programming language design: nondeterminism
and logic variables (unification).® The basic SCREAMER mechanisms of either and fail described
in the previous sections add nondeterminism to CoOMMON LisP. This section describes an additional
set of mechanisms provided with SCREAMER which add logic variables to CoMMoON Lisp. This set of
mechanisms 1s collectively called the constraint package. These mechanisms go a lot further than pro-
viding simple logic variables and unification; they provide much of the capability typically incorporated
in constraint-based logic programming languages such as crLp(®) (Jaffar and Michaylov, 1987; Heintze
et al. 1987) and CHIP (Van Hentenryck, 1989). In contrast, SCREAMER uses constraint satisfaction
methods based on range propagation rather than the linear programming techniques used by cLP(R)
and CHIP. Hence the name constraint package.

The constraint package adds a single new data type to CoMMON Lisp: the wariable. Variables
provide a superset of the functionality of logic variables. In addition to being able to be bound to
arbitrary values, they may also be dynamically annotated at run time with constraints on the values
to which they may be bound. Variables are created with the function make-variable. Initially they
are unbound but may become bound as a result of constraints which are asserted between variables.
Variables are bound if SCREAMER can determine that only a single value can satisfy the constraints in
which the variable participates. Otherwise, variables remain unbound. All of the primitives provided by
SCREAMER accept either bound variables, unbound variables or non-variables as arguments. Collectively
we will refer to any such entity as a value. Unlike PROLOG and its derivatives, which usually allow all
primitives to take variables as arguments, the primitives provided by CoMMON LispP however, can take
only non-variable values as arguments. Depending on the implementation and the setting of compiler
optimization switches, most COMMON LisP primitives will signal an error message when passed a vari-
able as an argument. The SCREAMER primitives value-of and apply-substitution can be used to
access the value of a bound variable before calling a CoMMON LIsP primitive.® In most cases unbound
variables can be forced to take on a unique value by using the SCREAMER primitives linear-force and
divide-and-conquer-force. These are nondeterministic functions which provide the interface between
constraint propagation and backtracking search. Bound variables are always dereferenced when printed.
Unbound variables print in some form which is not parsable by the Lisp reader, designed to make the
identity and simple properties of the variable readily apparent. The SCREAMER primitives bound? and
ground? can be used to determine whether a value is bound or unbound. The primitive bound? is
analogous to the extra-logic predicates var and nonvar typically included in a PROLOG implementation.

Variables can participate in constraints. SCREAMER provides a rich set of primitives for mutually
constraining variables. Constraint satisfaction is implemented in SCREAMER by a combination of con-
straint propagation and backtracking search. The constraint primitives attach procedures called noticers
onto variables. Whenever the domain, range or type of a variable is restricted, the noticers attached
onto that variable are run to propagate the effect of that restriction to other mutually constrained vari-
ables. Noticers implement constraint propagation. Since constraint propagation alone is not a complete
constraint satisfaction technique, it is augmented by backtracking search. Constraint propagation and

4Some people add a third innovation, pattern directed invocation. In my opinion, pattern directed invocation is primarily
a syntactic convenience while the other two innovations add significant expressiveness to any programming language.

5This operation is sometimes called dereferencing. PROLOG and its derivatives provide automatic dereferencing. It
would be nice if COMMON Lisp provided a hook to allow an arbitrary dereferencing function to be defined on a per type
basis and specify that any primitive operation that was undefined given the types of arguments it was called with would
first call the appropriate dereferencing functions on it arguments. Such an extension would be useful not only for logic
variables but for lazy evaluation and futures (Halstead, 1977) as well.

backtracking search run automatically in an interleaved opportunistic fashion. The user never directly
deals with the attaching and running noticers; that is automatically handled by SCREAMER. The user
simply creates variables, asserts constraints between them and asks SCREAMER for solutions. Nonethe-
less, 1t 1s helpful to know a little bit about the implementation details since at one level, the precise
semantics of the SCREAMER primitives depends on the implementation.

Several general principles pertaining to noticers hold throughout the implementation. First, all no-
ticers are deterministic. Constraint propagation thus is a deterministic process. Noticers may fail how-
ever. Like all failures, this causes backtracking to the most recent choice point. Choice points are created
by the primitive SCREAMER solution forcing functions 1linear-force and divide-and-conquer-force
in addition to any other choice points explicitly created by the user. Second, all noticers are attached to
variables by local side effect. Thus constraints asserted between variables disappear upon backtracking.

Constraint propagation may restrict the value that a variable may take on. Several forms of restriction
are currently implemented in SCREAMER. These include domain restrictions, range restrictions and
type restrictions. The kinds of restriction will be discussed in greater detail in the following sections.
Several general principles pertaining to restrictions hold throughout the implementation. First, there
is only one kind of variable. Any variable may have any combination of restrictions placed on it and
may participate in any form of constraint. Second, variables are always restricted by local side effect.
Thus any restrictions placed on the values of variables disappear upon backtracking. See section 3 for
a discussion of the implications of this for the interaction between local side effects and SCREAMER
primitives like one-value.

6 Domain, Range and Type Restrictions

The SCREAMER constraint package incorporates the following simple type system. All values are either
numeric or non-numeric. Numeric values are in turn either real or non-real. Real numbers include both
floating point numbers as well as rational numbers. Non-real numbers include complex numbers. Real
values are in turn either integer or non-integer. The above classes are not disjoint. In the SCREAMER
type system, all integers are reals and all real are numbers. Any value however, can be classified in one
of the following four disjoint classes: integer, non-integer real, non-real number, non-number.

One must bear in mind that the SCREAMER notion of type is derived from the CommoN Lisp
representation of an object and not its abstract mathematical properties. Thus SCREAMER does not
consider the number 1.0 to be an integer since its underlying COMMON LISP representation is a floating
point number and COMMON LISP never automatically converts a floating point number to an integer. On
the other hand, SCREAMER does consider 4/1 to be an integer since CoMMON Lisp will automatically
convert a rational number with one as its denominator into an integer. Likewise, SCREAMER considers
#C(4 0) to be an integer since COMMON Lisp will convert a complex number whose components are
integers and whose imaginary part is zero into an integer. SCREAMER however, does not consider
#C(4.0 0.0) to be real since COMMON LisP will not convert a complex number whose components are
reals into a real, even though its imaginary part is zero. Since COMMON LISP represents both parts of
a complex number as the same data type, both #C(4.0 0) and #C(4 0.0) are treated as #C(4.0 0.0).

SCREAMER can optionally restrict a variable to take on values only of a given type. Variables whose
values are restricted to be numeric are termed numeric variables. Similar terminology is used for non-
numeric, real, non-real, integer and non-integer variables. Variables created with make-variableinitially
carry no type restrictions. Subsequent type restrictions can be added using the primitives integerv,
realv and numberv, potentially combined with notv, along with assertv!. For example, a real variable
can be created using:

(let ((x (make-variable)))
(assert! (realv x))

o)

a non-numeric variable using:

(let ((x (make-variable)))
(assert! (notv (numberv x)))

o)

and a non-integer real using:

(let ((x (make-variable)))
(assert! (notv (integerv x)))
(assert! (realv x))

S

As the last example shows, several type restrictions can be placed simultaneously on the same variable
subject to the provision that the intersection of the types in nonempty. An attempt, such as the following,
to restrict a variable to an empty set of possible values fails and backtracks to the previous choice point.

(let ((x (make-variable)))
(assert! (notv (numberv x)))
(assert! (integerv x))

S

This does not cause an error unless the assertion is performed outside the context of any choice point.
Remember that in SCREAMER, restricting a variable to be an integer inherently restricts it to be real
and restricting a variable to be real inherently restricts it to be numeric. Likewise, restricting a variable
to be non-numeric restricts it to be non-real and restricting a variable to be non-real restricts it to be
non-integer. In the above example, (assert! (integerv x)) will fail since x is already restricted to be
non-numeric and thus non-integer.

All SCREAMER constraint primitives accept both bound and unbound variables, as well as non-
variable values, as their arguments. This includes the type primitives integerv, realv and numberv.
Thus (assert! (integerv 4.0)) is acceptable and will fail immediately. Likewise (assert! (integerv x))
will also fail immediately if x evaluates to 4.0 or if x evaluates to a variable which is bound to 4.0.

In the above examples, the types of variables were explicitly restricted using the assert! primi-
tive. SCREAMER may restrict the types of variables in two other ways. First, a number of SCREAMER
primitives create and return variables which are already typed. In particular the primitives foo return
integer variables, the primitives bar return real variables and the primitives baz return numeric vari-
ables. Second, a number of SCREAMER primitives restrict the types of their arguments. In particular
... Remember that all SCREAMER constraint primitives accept both bound and unbound variables, as
well as non-variable values as arguments. A primitive which restricts an argument to a given type will
fail immediately if called with a non-variable value not meeting the type restriction. Similarly, a bound
variable whose value does not meet the type restriction will also cause immediate failure. When an
unbound variable is passed to a restricted argument, the primitive immediately restricts that variable
to be of the requisite type before any further processing. That restriction may cause immediate failure
if the restriction would cause the variable’s type to become empty.

The type hierarchy implies that at any point in time a variable can be in one of ten type restriction
states: integer, non-integer, non-integer number, non-integer real, real, non-real, non-real number, num-
ber, non-number and unknown. In all but the last, some information is known about the type of value
which the variable may take on. Thus a variable which 1s

7 Binding, Dereferencing and Sharing
8 Argument Restrictions

9 Aggregate Objects

A number of SCREAMER primitives deal with aggregate objects, traversing the slots of such objects recur-
sively to access all of their sub-objects. These primitivesinclude equalv, ground?, apply-substitution,
domain-size, solution and template. The only aggregate objects which SCREAMER currently knows
how to traverse are cons cells. All other aggregate objects are treated as atomic. Furthermore, any
primitive which traverses aggregate data may loop if the aggregate object contains circular pointers.

10 Unwedging Screamer

To compile efficient code, SCREAMER must know whether or not an expression i1s deterministic since
SCREAMER can generate more efficient code for deterministic expressions, subexpressions and functions
than for nondeterministic ones. Whether or not an expression is deterministic can depend on whether or
not the functions it calls are deterministic. Thus SCREAMER maintains a database of the function calling
structure of any functions which have been compiled or loaded into the Lisp world. This ‘who-calls’
database is implemented in portable CoMMON Lisp and is part of SCREAMER. It is independent of
any other native who-calls database that may be built into the CoMMON Lisp implementation for other
purposes.

For the most part, the SCREAMER who-calls database is completely transparent from the user. There
are however, a number of quirky situations where it is helpful to understand its operation. Some of these
situations are unavoidable. Others are simply bugs in the current implementation.

When compiling an expression e which calls a function f, SCREAMER needs to know whether or not f
1s deterministic to know how to compile e. There will be no problem if the definition of f appears before e
in the program, i.e. if the call to f is a backward reference. SCREAMER will already know whether or
not f i1s deterministic and thus how to compile e. The situation is more complex for forward references.
SCREAMER assumes by default that f is deterministic and compiles e accordingly. It also saves the
complete source code definition for the function g which contains e. If SCREAMER later discovers that f
is actually nondeterministic, then SCREAMER recompiles g. This recompilation happens automatically.
The user normally need not be aware that this is happening.

When using the CoMMON LisP compile-file function, this recompilation causes the binary file to
contain two definitions for the function g—one where the original definition appeared and one at the
place of recompilation just prior to the definition of .6 Some CoMMoN Lisp implementations will issue
a warning that the binary file contains multiple definitions for functions. Such warnings can safely be
ignored.” Note that there is no run time performance penalty for forward references and recompilation.
The compiled code resulting at the end is the same as for backward references. Thus there should be no
temptation to restructure program files to minimize forward references. The only penalties are increased
compilation time due to recompilation, slightly increased binary file size and slightly increased load
time. Recompiling a file a second time in the same LisP world will eliminate all duplicate definitions

61t is actually possible for a function to have several recompilations. If f has forward references to g and h, both of
which are later found to be nondeterministic, f will be recompiled twice, once prior to the definition of g and again prior
to the definition of h. It is also possible for recompilations to cascade. If f has a forward reference to g which in turn has
a forward reference to h then discovering that h is nondeterministic will cause both g and then f to be recompiled when A
is compiled. It is our experience that such multiple recompilations are very rare.

"It would be nice if CoMMON LIsp provided a declaration to disable such warnings.

and alleviate the increased binary file size and load time penalties since SCREAMER will have a complete
and up-to-date who-calls database for the second compilation.

This same who-calls database allows users to safely redefine functions, changing them from deter-
ministic to nondeterministic and vica versa. SCREAMER will track all such changes using the who-calls
database and recompile the necessary functions to keep the code optimal and correct at all times. It
is possible however, for there to be bugs in the who-calls database code which might cause SCREAMER
to incorrectly determine whether or not a function is deterministic and thus generate incorrect or in-
efficient code. We request that you inform us if you discover such a bug by sending a bug report to
Bug-Screamer@AI .MIT.EDU including as much information as possible to allow us to repeat that bug.
Nonetheless, even if you are bitten by a bug in the who-calls database management code, it is usually
possible for you to recover and still compile and run your program. We provide two functions to allow
you to manually remove entries from the SCREAMER who-calls database. The first, purge, allows you to
remove individual entries. This function would typically be used if you encounter problems compiling a
function f. In this case, you should purge f along with all functions called by f and then recompile each
of the functions just purged. The second, unwedge-screamer, is for more catastrophic situations. It will
purge all user defined functions. You will then need to recompile and reload all user defined functions.

There is one currently known bug in the who-calls database code. It arises when a function calls itself,
either directly or indirectly, through a chain of other functions (i.e. f calls ¢ which in turn calls A which
in turn calls f). If any function in the call cycle is nondeterministic than the all functions in the cycle
will be nondeterministic. SCREAMER has no problem detecting that this is the case. If however, each
of the functions in the cycle are redefined so that they are deterministic, the entire cycle can be made
deterministic. SCREAMER will not detect this and will still think that the entire cycle is nondeterministic.
Until this bug is fixed, you can manually recover from such a situation by simply purging each of the
functions in the call cycle and then recompiling them. Remember to first purge all of the functions before
recompiling any of them or SCREAMER will still insist that the entire call cycle is nondeterministic.

11 Manual Entries

nondeterministic-function? z [Deterministic Function)

Returns t if « is a nondeterministic function object and nil otherwise. Nondeterministic function objects
can be produced in two ways. First, the special form (function foo) (i.e. #’foo) will (deterministically)
evaluate to a nondeterministic function object if foo names a nondeterministic function defined by
defun. Second, the special form (function (lambda (...) ...)) (i.e. #’(lambda (...) ...)) will
(deterministically) evaluate to a nondeterministic function object if the body of the lambda expression
contains a nondeterministic expression.

either {expression}* [Nondeterministic Special Form]

Nondeterministically evaluates and returns the value of one of its expressions. It sets up a choice point
and evaluates the first ezpression returning its result. Whenever backtracking proceeds to this choice

10

point, the next expression is evaluated and its result returned. When no more ezpressions remain, the
current choice point is removed and backtracking continues to the next most recent choice point. As an
optimization, the choice point created for this expression is removed before the evaluation of the last
expression so that a failure during the evaluation of the last expression will backtrack directly to the par-
ent choice point of the either expression. Either takes any number of arguments. With no arguments,
(either) is equivalent to (fail) and is thus deterministic. With one argument, (either ezpression) is
equivalent to expression itself and is thus deterministic only when expression is deterministic. Either is
a special form, not a function. It is an error for the expression #’either to appear in a program. Thus
(funcall #’either ...) or (apply #’either ...) are in error and will yield unpredictable results.
With two or more argument it is nondeterministic and can only appear in a nondeterministic context.
See section 2 for a discussion of the contexts in which either may appear.

fail [Deterministic Function)

Backtracks to the most recent choice point. Equivalent to (either). Note that fail i1s a deter-
ministic function and thus it is permissible to reference #’fail and write (funcall #’fail) and
(apply #’fail nil). In nondeterministic contexts, the expression (fail) is optimized to generate
inline backtracking code.

local {expression}* [Macro)

Evaluates expressions in the same fashion as progn except that all setf and setq expressions lexically
nested in its body result in local side effects which are undone upon backtracking. Note that this affects
only side effects introduced explicitly via setf and setq. Side effects introduced by CoMmMoON LisP built-
in functions such as rplaca are always global. Furthermore, it affects only occurrences of setf and setq
which appear textually nested in the body of the local expression—not those appearing in functions
called from the body. Local and global expressions may be nested inside one another. The nearest
surrounding declaration determines whether or not a given setf or setq results in a local or global
side effect. Side effects default to be global when there is no surrounding local or global expression.
Local side effects can appear both in deterministic as well as nondeterministic contexts though different
techniques are used to implement the trailing of prior values for restoration upon backtracking. See
sections 14, 3 and 4 for details. In nondeterministic contexts, local as well as setf are treated as
special forms rather than macros. This should be completely transparent to the user.

global {expression}* [Macro)

Evaluates expressions in the same fashion as progn except that all setf and setq expressions lexically
nested in its body result in global side effects which are not undone upon backtracking. Note that this

11

affects only side effects introduced explicitly via setf and setq. Side effects introduced by ComMmon Lisp
built-in functions such as rplaca are always global anyway. Furthermore, it affects only occurrences of
setf and setq which appear textually nested in the body of the global expression—not those appearing
in functions called from the body. Local and global expressions may be nested inside one another.
The nearest surrounding declaration determines whether or not a given setf or setq results in a local
or global side effect. Side effects default to be global when there is no surrounding local or global
expression. Global side effects can appear both in deterministic as well as nondeterministic contexts.
See sections 3 and 4 for further details. In nondeterministic contexts, global as well as setf are treated
as special forms rather than macros. This should be completely transparent to the user.

map-values function expression [Deterministic Macro)

Function must be a deterministic function object which takes one argument. This function is called on
each value returned by evaluating expression, backtracking after calling function on each value to produce
another value of expression until evaluating expression fails and produces no further values. The results
returned by calling function on each value are discarded. Local side effects performed by ezpression are
available during the corresponding call to function but are undone when that call returns. Likewise, local
side effects performed by function are undone when it returns. Thus by the time map-values returns, all
local side effects performed either by expression or function are undone. A map-values expression itself
is always deterministic and always returns nil. In nondeterministic contexts, map-values is treated as
a special form rather than a macro. This should be completely transparent to the user.

one-value expression [default-expression) [Macro)

Returns the first value of a nondeterministic expression. FEzpression is evaluated, deterministically re-
turning only its first nondeterministic value, if any. No further execution of exzpression is attempted after
it successfully returns one value. If expression does not return any nondeterministic values (i.e. it fails)
then default-expression is evaluated and its value returned instead. Default-expression defaults to (fail)
if not present. Local side effects performed by ezpression are undone when one-value returns. On the
other hand, local side effects performed by default-expression are not undone when one-value returns.
A one-value expression can appear in both deterministic and nondeterministic contexts. Irrespective
of what context the one-value expression appears in, erpression is always in a nondeterministic con-
text, while default-expression is in whatever context the one-value expression appears. A one-value
expression 1s nondeterministic if default-expression is present and is nondeterministic, otherwise it 1s
deterministic. If default-expression is present and nondeterministic, and if expression fails, then 1t 1s
possible to backtrack into the default-expression and for the one-value expression to nondeterministi-
cally return multiple times. One-value is analogous to the cut primitive (!) in PROLOG.

all-values {expression}* [Deterministic Macro)

12

Evaluates expressions (wrapped in an implicit progn) and returns a list of all of the nondeterministic
values returned by the last ezpression. These values are produced by repeatedly evaluating the body
and backtracking to produce the next value, until the body fails and yields no further values. Accord-
ingly, local side effects performed by the body while producing each value are undone before attempting
to produce subsequent values, and all local side effects performed by the body are undone upon exit
from all-values. Returns the list containing nil if there are no expressions. An all-values ex-
pression can appear in both deterministic and nondeterministic contexts. Irrespective of what context
the all-values expression appears in, the expressions are always in a nondeterministic context. An
all-values expression itself is always deterministic. All-values is analogous to the bagof primitive
in PrROLOG.

ith-value i expression [defauli-expression] [Macro)

Returns the i*" value of a nondeterministic expression. Ezpression is evaluated, deterministically return-
ing only its i'" nondeterministic value, if any. I must be an integer. The first nondeterministic value
returned by ezpression is numbered zero, the second one, etc. The i"" value is produced by repeatedly
evaluating ezpression, backtracking through and discarding the first ¢ values and deterministically re-
turning the next value produced. No further execution of expression is attempted after it successfully
returns the desired value. If expression fails before returning both the ¢ values to be discarded, as well
as the desired i*® value, then default-expression is evaluated and its value returned instead. Default-
expression defaults to (fail) if not present. Local side effects performed by expression are undone
when ith-value returns. On the other hand, local side effects performed by default-expression and by ¢
are not undone when ith-value returns. An ith-value expression can appear in both deterministic
and nondeterministic contexts. Irrespective of what context the ith-value expression appears in, exr-
pression 1s always in a nondeterministic context, while default-expression and i are in whatever context
the ith-value expression appears. An ith-value expression is nondeterministic if default-expression
is present and is nondeterministic, or if ¢ is nondeterministic. Otherwise it is deterministic. If default-
expression is present and nondeterministic, and if expression fails, then it is possible to backtrack into the
default-expression and for the ith-value expression to nondeterministically return multiple times.
If 7 is nondeterministic then the ith-value expression operates nondeterministically on each value of 1.
In this case, backtracking for each value of expression and default-expression is nested in, and restarted
for, each backtrack of i.

print-values {expression}” [Deterministic Macro)

Evaluates ezpressions (wrapped in an implicit progn) and prints each of the nondeterministic values
returned by the last expression in succession (using print). After each value is printed, the user is queried
as to whether or not further values are desired. These values are produced by repeatedly evaluating the
body and backtracking to produce the next value, until either the user indicates that no further values
are desired or until the body fails and yields no further values. Accordingly, local side effects performed
by the body while producing each value are undone after printing each value, before attempting to

13

produce subsequent values, and all local side effects performed by the body are undone upon exit
from print-values, either because there are no further values or because the user declines to produce
further values. A print-values expression can appear in both deterministic and nondeterministic
contexts. Irrespective of what context the print-values expression appears in, the ezpressions are
always in a nondeterministic context. A print-values expression itself is always deterministic and
always returns nil. Print-values is analogous to the standard top-level user interface in PROLOG.

funcall-nondeterministic function {argument}* [Nondeterministic Function)

Analogous to the CoMMON LisP built-in function funcall except that it accepts both ordinary CoMMON
(deterministic) function objects as well as nondeterministic function objects for function. You must
use funcall-nondeterministic to funcall a nondeterministic function object. A runtime error will
be signalled if you attempt to funcall a nondeterministic function object with funcall. You can use
funcall-nondeterministic to funcall either a deterministic or nondeterministic function object though
even if all of the arguments to funcall-nondeterministic are deterministic and function is a determin-
istic function object, the call expression will still be nondeterministic (with presumably a single value),
since 1t is impossible to determine at compile time that a given call to funcall-nondeterministic will
be passed only deterministic function objects for function.

apply-nondeterministic function {argument}® [Nondeterministic Function)

Lisp

Analogous to the CoMMON LisP built-in function apply except that it accepts both ordinary CoMMoON Lisp

(deterministic) function objects as well as nondeterministic function objects for function. You must use
apply-nondeterministic to apply a nondeterministic function object. A runtime error will be signalled

if you attempt to apply a nondeterministic function object with apply. You can use apply-nondeterministic

to apply either a deterministic or nondeterministic function object though even if all of the arguments
to apply-nondeterministic are deterministic and function is a deterministic function object, the call
expression will still be nondeterministic (with presumably a single value), since it is impossible to deter-
mine at compile time that a given call to apply-nondeterministic will be passed only deterministic
function objects for function.

purge function-name [Deterministic Function)

Removes any information about function-name from SCREAMER’s who-calls database. See section 10
for an explanation of when this would be used.

14

unwedge-screamer [Deterministic Function)

Removes any information about all user defined functions from SCREAMER’s who-calls database. See
section 10 for an explanation of when this would be used.

member-of sequence [Nondeterministic Function)

Nondeterministically returns an element of sequence. The elements are returned in the order that they
appear in sequence. Sequence must be either a list or a vector.

integer-between low high [Nondeterministic Function)

Nondeterministically returns an integer in the closed interval [low, high]. The results are returned in
ascending order. Low and high must be integers. Fails if the interval does not contain any integers.

make-variable [name] [Deterministic Function)

Creates and returns a new variable. Variables are assigned a name which is only used to identify the
variable when 1t is printed. If the parameter name is given then it is assigned as the name of the variable.
Otherwise, a unique name is assigned. The parameter name can be any Lisp object.

numberv z [Deterministic Function)

If when numberv is called, # is known to be numeric then numberv returns t. Alternatively, if when
numberv is called, z is known to be non-numeric then numberv returns nil. If it is not known whether or
not « 1s numeric when numberv is called then numberv creates and returns a new boolean variable v. The
values of and v are mutually constrained via noticers so that v is equal to t if and only if # is known to
be numeric and v is equal to nil if and only if x 1s known to be non-numeric. If # later becomes known
to be numeric, a noticer attached to x restricts v to equal t. Likewise, if x later becomes known to be
non-numeric, a noticer attached to x restricts v to equal nil. Furthermore, if v ever becomes known to
equal t then a noticer attached to v restricts x to be numeric. Likewise, if v ever becomes known to
equal nil then a noticer attached to v restricts # to be non-numeric.

15

realv z [Deterministic Function)

If when realv is called, # is known to be real then realv returns t. Alternatively, if when realv is
called, = is known to be non-real then realv returns nil. If it is not known whether or not x is real
when realv is called then realv creates and returns a new boolean variable v. The values of and v
are mutually constrained via noticers so that v 1s equal to t if and only if # 1s known to be real and v
1s equal to nil if and only if # is known to be non-real. If x later becomes known to be real, a noticers
attached to x restricts v to equal t. Likewise, if # later becomes known to be non-real, a noticer attached
to x restricts v to equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached
to v restricts x to be real. Likewise, if v ever becomes known to equal nil then a noticer attached to v
restricts z to be non-real.

integerv [Deterministic Function)

If when integerv is called, is known to be integer valued then integerv returns t. Alternatively, if
when integerv is called, = is known to be non-integer valued then integerv returns nil. If it is not
known whether or not z is integer valued when integerv is called then integerv creates and returns a
new boolean variable v. The values of # and v are mutually constrained via noticers so that v is equal
to t if and only if z is known to be integer valued and v is equal to nil if and only if z 1s known to be
non-integer valued. If z later becomes known to be integer valued, a noticer attached to x restricts v to
equal t. Likewise, if z later becomes known to be non-integer valued, a noticer attached to x restricts v
to equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached to v restricts x to
be integer valued. Likewise, if v ever becomes known to equal nil then a noticer attached to v restricts z
to be non-integer valued.

memberv z y [Deterministic Function)

The current implementation imposes two constraints on the parameter y. First, y must be bound when
memberv is called. Second, y must not contain any unbound variables when memberv is called. The value
of parameter y must be a sequence, i.e. either a list or a vector. If when memberv is called, = is known
to be a member of y (using the ComMoN Lisp function eql as a test function) then memberv returns t.
Alternatively, if when memberv is called, x is known not to be a member of y then memberv returns nil.
If it is not known whether or not z is a member of y when memberv is called then memberv creates and
returns a new boolean variable v. The values of x and v are mutually constrained via noticers so that v
is equal to t if and only if z is known to be a member of y and v is equal to nil if and only if x 1s
known not to be a member of y. If x later becomes known to be a member of y, a noticer attached to x
restricts v to equal t. Likewise, if x later becomes known not to be a member of y, a noticer attached
to x restricts v to equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached
to v restricts & to be a member of y. Likewise, if v ever becomes known to equal nil then a noticer
attached to v restricts x not to be a member of y.

16

booleanv [Deterministic Function)

The expression (booleanv z) is an abbreviation for (memberv = ’(t nil)).

assert! x [Deterministic Macro)

The argument z can be either a variable or a non-variable. The expression (assert! z) restricts z to
equal t. This assertion may cause other assertions to be made due to noticers attached to z. A call to
assert! fails if x is known not to equal t prior to the assertion or if any of the assertions performed
by the noticers result in failure. No meaningful result is returned. Except for the fact that one cannot
write #’assert!, assert! behaves like a function, even though it is implemented as a macro. The
reason it 1s implemented as a macro is to allow a number of compile time optimizations. Expressions like
(assert! (notv x)), (assert! (numberv x)) and (assert! (notv (numberv z))) are transformed
into calls to functions internal to SCREAMER which eliminate the need to create the boolean variable(s)
normally returned by functions like notv and numberv. Calls to the functions numberv, realv, integerv,
memberv, booleanv, =v, <v, <=v, >v, >=v, /=v, notv, funcallv, applyv and equalv which appear directly
nested in a call to assert!, or directly nested in a call to notv which is in turn directly nested in a call
to assert!, are similarly transformed.

known? x [Deterministic Macro)

The argument z can be either a variable or a non-variable. The expression (known? z) restricts z
to be boolean. This assertion may cause other assertions to be made due to noticers attached to x.
A call to known? fails if z is known not to be boolean prior to the assertion or if any of the asser-
tions performed by the noticers result in failure. Restricting & to be boolean attaches a noticer on z
so that any subsequent assertion which restricts x to be non-boolean will fail. If x is equal to t af-
ter being restricted to be boolean then known? returns t. If x is equal to nil or if the value of z is
unknown then known? returns nil. Except for the fact that one cannot write #’known?, known? be-
haves like a function, even though it is implemented as a macro. The reason it is implemented as
a macro is to allow a number of compile time optimizations. Expressions like (known? (notv x)),
(known? (numberv z)) and (known? (notv (numberv z))) are transformed into calls to functions in-
ternal to SCREAMER which eliminate the need to create the boolean variable(s) normally returned by
functions like notv and numberv. Calls to the functions numberv, realv, integerv, memberv, booleanv,
=v, <v, <=v, >v, >=v, /=v, notv, funcallv, applyv and equalv which appear directly nested in a call
to known?, or directly nested in a call to notv which is in turn directly nested in a call to known?, are
similarly transformed.

decide x [Nondeterministic Macro]

17

The argument x can be either a variable or a non-variable. The expression (decide z) restricts x to be
boolean. This assertion may cause other assertions to be made due to noticers attached to . A call to
decide immediately fails if x is known not to be boolean prior to the assertion or if any of the assertions
performed by the noticers result in failure. Restricting # to be boolean attaches a noticer on z so that
any subsequent assertion which restricts x to be non-boolean will fail. After x is restricted to be boolean
a nondeterministic choice is made. For one branch, x is restricted to equal t and (decide z) returns t
as a result. For the other branch, z is restricted to equal nil and (decide x) returns nil as a result.
Except for implementation optimizations (decide x) is equivalent to:

(either (progn (assert! z) t) (progn (assert! (notv z)) nil)).

The implementation guarantees that « i1s evaluated only once so it may safely contain side effects. Except

for the fact that one cannot write #’decide, decide behaves like a function, even though it is imple-
mented as a macro. The reason it is implemented as a macro is to allow a number of compile time opti-
mizations. Expressions like (decide (notv z)), (decide (numberv x)) and (decide (notv (numberv z)))
are transformed into calls to functions internal to SCREAMER which eliminate the need to create the
boolean variable(s) normally returned by functions like notv and numberv. Calls to the functions
numberv, realv, integerv, memberv, booleanv, =v, <v, <=v, >v, >=v, /=v, notv, funcallv, applyv

and equalv which appear directly nested in a call to decide, or directly nested in a call to notv which

is in turn directly nested in a call to decide, are similarly transformed.

=y z7 [Deterministic Function)

Returns a boolean value which is constrained to be t if all of the arguments are numerically equal and
constrained to be nil if two or more of the arguments numerically differ. This function takes one or
more arguments. All of the arguments are restricted to be numeric (see section 8). Returns t when
called with one argument. A call such as (=v #1 zs...2,) with more than two arguments behaves like
a conjunction of two argument calls:

(andv (=v 21 z9)...(=v z; @41)...(5V 21 2,))

Behaves as follows when called with two arguments. Returns t if z; 1s known to be equal to x5 at the
time of call. Two numeric values are known to be equal only when they are both bound and equal
according to the CoMMON LisP function =. Returns nil if z; is known not to be equal to x5 at the time
of call. Two numeric values are known not to be equal when their domains are disjoint (see section 6).
Furthermore two real values are known not to be equal when their ranges are disjoint, i.e. the upper
bound of one is greater than the lower bound of the other (see section 6). If it is not known whether
or not x1 1s equal to x5 when =v is called then =v creates and returns a new boolean variable v. The
values of x1, x5 and v are mutually constrained via noticers so that v is equal to t if and only if z; 1s
known to be equal to x5 and v 1s equal to nil if and only if 7 is known not to be equal to z4. If it later
becomes known that z is equal to x5, noticers attached to x; and xs restrict v to equal t. Likewise, if
it later becomes known that x1 is not equal to x4, noticers attached to x#; and x4 restrict v to equal nil.
Furthermore, if v ever becomes known to equal t then a noticer attached to v restricts x; to be equal
to @9. Likewise, if v ever becomes known to equal nil then a noticer attached to v restricts x; not
to be equal to z5. Restricting two values ;1 and x5 to be equal is performed by attaching noticers
to 21 and z3. These noticers continually restrict the domains of 1 and zs to be equivalent sets (using
the ComMoON Lisp function = as a test function) as their domains are restricted. Furthermore, if #; is

18

known to be real then the noticer attached to x5 continually restrict the upper bound of z; to be no
higher than the upper bound of z5 and the lower bound of #; to be no lower than the lower bound
of x5. The noticer of x4 performs a symmetric restriction on the bounds of x; if it is known to be
real. Restricting two values 7 and x5 to not be equal is also performed by attaching noticers to z
and z5. These noticers however, do not restrict the domains or ranges of z; or 3. They simply monitor
their continually restrictions and fail when any assertion causes z; to be known to be equal to z5. See
section 6 for a discussion of variable upper and lower bounds, and domains.

<v xt [Deterministic Function)

Returns a boolean value which is constrained to be t if each argument z; is less than the following
argument ;41 and constrained to be nil if some argument x; is greater than or equal to the following
argument ;1. This function takes one or more arguments. All of the arguments are restricted to be
real (see section 8). Returns t when called with one argument. A call such as (<v 21 s...2,) with
more than two arguments behaves like a conjunction of two argument calls:

(andv (<v 21 29)...(<v 2 @i41).. .(<V Zp_1 2,))

Behaves as follows when called with two arguments. Returns t if #; is known to be less than x5 at the
time of call. A real value x; is known to be less than a real value x5 if 1 has an upper bound, x5 has a
lower bound and the upper bound of #; is less than the lower bound of #2 (see section 6). Returns nil
if z; is known to be greater than or equal to zs at the time of call. A real value x; is known to be
greater than or equal to a real value x5 if #1 has a lower bound, z» has an upper bound and the lower
bound of x; is greater than or equal to the upper bound of x5 (see section 6). If it is not known whether
or not z1 1s less than x> when <v 1s called then >v creates and returns a new boolean variable v. The
values of x1, x5 and v are mutually constrained via noticers so that v is equal to t if and only if z; 1s
known to be less than x5 and v is equal to nil if and only if 1 is known to be greater than or equal
to xo. If it later becomes known that x; i1s less than x5, noticers attached to x; and z9 restrict v to
equal t. Likewise, if it later becomes known that #; 1s greater than or equal to x5, noticers attached
to x1 and @, restrict v to equal nil. Furthermore, if v ever becomes known to equal t then a noticer
attached to v restricts #; to be less than x,. Likewise, if v ever becomes known to equal nil then a
noticer attached to v restricts z; to be greater than or equal to z». Restricting a real value z; to be
less than a real value x5 is performed by attaching noticers to x; and 3. The noticer attached to z
continually restricts the lower bound of x5 to be no lower than the upper bound of x; if 1 has an upper
bound. The noticer attached to x5 continually restricts the upper bound of z; to be no higher than the
lower bound of s if 5 has a lower bound. Since these restrictions only guarantee that z; be less than
or equal to zo, the constraint that x; be strictly less than s is enforced by having the noticers fail when
both 1 and #5 become known to be equal. Restricting a real value z; to be greater than or equal to a
real value x5 is performed by an analogous set of noticers without this last equality check. See section 6
for a discussion of variable upper and lower bounds, and domains.

<=y z¥t [Deterministic Function)

19

Returns a boolean value which is constrained to be t if each argument x; is less than or equal to the
following argument z;41 and constrained to be nil if some argument x; is greater than the following
argument ;1. This function takes one or more arguments. All of the arguments are restricted to be
real (see section 8). Returns t when called with one argument. A call such as (<=v 1 za...2,) with
more than two arguments behaves like a conjunction of two argument calls:

(andv (<=v 21 z2)...(<=v 2; Ziy1).. .(<=V 2p_1)

Behaves as follows when called with two arguments. Returns t if 1 is known to be less than or equal
to x5 at the time of call. A real value x; is known to be less than or equal to a real value x4 if 21 has
an upper bound, x5 has a lower bound and the upper bound of x; is less than or equal to the lower
bound of x4 (see section 6). Returns nil if #; is known to be greater than x5 at the time of call. A real
value z;7 1s known to be greater than a real value x5 if 1 has a lower bound, #5 has an upper bound and
the lower bound of #; is greater than the upper bound of x5 (see section 6). If it is not known whether
or not xi is less than or equal to x5 when >=v is called then >=v creates and returns a new boolean
variable v. The values of x1, x5 and v are mutually constrained via noticers so that v is equal to t if
and only if z; is known to be less than or equal to x5 and v is equal to nil if and only if #; is known to
be greater than z,. If it later becomes known that ;1 1s less than or equal to x5, noticers attached to
and z, restrict v to equal t. Likewise, if it later becomes known that xz; is greater than z,, noticers
attached to x1 and x5 restrict v to equal nil. Furthermore, if v ever becomes known to equal t then
a noticer attached to v restricts xy to be less than or equal to x5. Likewise, if v ever becomes known
to equal nil then a noticer attached to v restricts x; to be greater than z5. Restricting a real value z
to be less than or equal to a real value 5 is performed by attaching noticers to z; and z5. The noticer
attached to x; continually restricts the lower bound of z4 to be no lower than the upper bound of x;
if #1 has an upper bound. The noticer attached to x5 continually restricts the upper bound of z; to be
no higher than the lower bound of x5 if z5 has a lower bound. Restricting a real value z1 to be greater
than a real value z, is performed by an analogous set of noticers. Since these restrictions only guarantee
that @1 be greater than or equal to xs, the constraint that z; be strictly greater than x5 i1s enforced by
having the noticers fail when both z; and x4 become known to be equal. See section 6 for a discussion
of variable upper and lower bounds, and domains.

>v xt [Deterministic Function)

Returns a boolean value which is constrained to be t if each argument z; is greater than the following
argument ;41 and constrained to be nil if some argument z; is less than or equal to the following
argument ;1. This function takes one or more arguments. All of the arguments are restricted to be
real (see section 8). Returns t when called with one argument. A call such as (>v 21 zs...2,) with
more than two arguments behaves like a conjunction of two argument calls:

(andv (>v 21 29)...0Ov 2 @41)...(OV Zp_1 2,))

Behaves as follows when called with two arguments. Returns t if 21 1s known to be greater than x5 at
the time of call. A real value z; is known to be greater than a real value z, if 1 has a lower bound,
22 has an upper bound and the lower bound of #; is greater than the upper bound of 5 (see section 6).
Returns nil if z; is known to be less than or equal to x5 at the time of call. A real value x1 is known to
be less than or equal to a real value x5 if 21 has an upper bound, x5 has a lower bound and the upper
bound of z; is less than or equal to the lower bound of zs (see section 6). If it is not known whether or

20

not x; is greater than z; when >v is called then >v creates and returns a new boolean variable v. The
values of x1, x5 and v are mutually constrained via noticers so that v is equal to t if and only if z; 1s
known to be greater than x4 and v is equal to nil if and only if #; is known to be less than or equal
to xo. If it later becomes known that z; is greater than z», noticers attached to z; and z» restrict v to
equal t. Likewise, if it later becomes known that x; is less than or equal to x5, noticers attached to x;
and x5 restrict v to equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached
to v restricts @1 to be greater than z4. Likewise, if v ever becomes known to equal nil then a noticer
attached to v restricts xz; to be less than or equal to z5. Restricting a real value z; to be greater than
a real value x5 is performed by attaching noticers to z; and #5. The noticer attached to z; continually
restricts the upper bound of x5 to be no higher than the lower bound of #; if #; has a lower bound.
The noticer attached to x5 continually restricts the lower bound of x; to be no lower than the upper
bound of s if 5 has an upper bound. Since these restrictions only guarantee that z; be greater than
or equal to x5, the constraint that z; be strictly greater than x» is enforced by having the noticers fail
when both z; and z5 become known to be equal. Restricting a real value z; to be less than or equal to a
real value x5 is performed by an analogous set of noticers without this last equality check. See section 6
for a discussion of variable upper and lower bounds, and domains.

>=y g7t [Deterministic Function)

Returns a boolean value which is constrained to be t if each argument z; is greater than or equal to
the following argument x;41 and constrained to be nil if some argument z; is less than the following
argument ;1. This function takes one or more arguments. All of the arguments are restricted to be
real (see section 8). Returns t when called with one argument. A call such as (>=v 1 z2...2,) with
more than two arguments behaves like a conjunction of two argument calls:

(andv (>=v 21 z2)...>0=v z; Ziy1)...(>=V 2p_1)

Behaves as follows when called with two arguments. Returns t if 21 is known to be greater than or equal
to x5 at the time of call. A real value z; is known to be greater than or equal to a real value x5 if 1 has
a lower bound, z5 has an upper bound and the lower bound of ; is greater than or equal to the upper
bound of xs (see section 6). Returns nil if 27 is known to be less than 25 at the time of call. A real
value z1 1s known to be less than a real value x5 if 1 has an upper bound, x5 has a lower bound and the
upper bound of #; is less than the lower bound of x5 (see section 6). If it is not known whether or not z;
is greater than or equal to &9 when >=v is called then >=v creates and returns a new boolean variable v.
The values of 1, 5 and v are mutually constrained via noticers so that v 1s equal to t if and only if z;
is known to be greater than or equal to 5 and v is equal to nil if and only if 1 is known to be less
than z,. If it later becomes known that ;1 is greater than or equal to x5, noticers attached to z; and 2
restrict v to equal t. Likewise, if it later becomes known that x; is less than x5, noticers attached to x;
and x5 restrict v to equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached
to v restricts 1 to be greater than or equal to z5. Likewise, if v ever becomes known to equal nil then
a noticer attached to v restricts x; to be less than zs. Restricting a real value #; to be greater than
or equal to a real value x5 is performed by attaching noticers to 1 and zs. The noticer attached to z;
continually restricts the upper bound of #5 to be no higher than the lower bound of z; if z; has a lower
bound. The noticer attached to x5 continually restricts the lower bound of #; to be no lower than the
upper bound of z; if 5 has an upper bound. Restricting a real value z; to be less than a real value 9
is performed by an analogous set of noticers. Since these restrictions only guarantee that z; be less than

21

or equal to zo, the constraint that x; be strictly less than s is enforced by having the noticers fail when
both z; and x5 become known to be equal. See section 6 for a discussion of variable upper and lower
bounds, and domains.

/=v zt [Deterministic Function]

Returns a boolean value which is constrained to be t if two or more of the arguments numerically differ
and constrained to be nil all of the arguments are numerically equal. This function takes one or more
arguments. All of the arguments are restricted to be numeric (see section 8). Returns nil when called
with one argument. A call such as (/=v z; ®3...z,) with more than two arguments behaves like a
conjunction of two argument calls:

(andv (/=v %1 z32) ... (/=v z1 z,)
(/=v x9 x3) ... (/=v 22 z,)
(/=v x; 41 ... (/=v x; xp)

(/=v ®n_1 x))

Behaves as follows when called with two arguments. Returns t if #; is known not to be equal to x5 at
the time of call. Two numeric values are known not to be equal when their domains are disjoint (see
section 6). Furthermore two real values are known not to be equal when their ranges are disjoint, i.e.
the upper bound of one is greater than the lower bound of the other (see section 6). Returns nil if z;
1s known to be equal to x5 at the time of call. Two numeric values are known to be equal only when
they are both bound and equal according to the CoMMON Lisp function =. If it is not known whether
or not x is equal to x5 when /=v is called then /=v creates and returns a new boolean variable v. The
values of x1, x5 and v are mutually constrained via noticers so that v is equal to t if and only if z; 1s
known not to be equal to x5 and v is equal to nil if and only if z; is known to be equal to z5. If it
later becomes known that x; is not equal to x5, noticers attached to x; and x5 restrict v to equal t.
Likewise, if it later becomes known that x; is equal to xs, noticers attached to z; and 9 restrict v to
equal nil. Furthermore, if v ever becomes known to equal t then a noticer attached to v restricts x;
to not be equal to x5. Likewise, if v ever becomes known to equal nil then a noticer attached to v
restricts z; to be equal to zs. Restricting two values z; and x5 to be equal is performed by attaching
noticers to 1 and x5. These noticers continually restrict the domains of 21 and x5 to be equivalent sets
(using the ComMoN LisP function = as a test function) as their domains are restricted. Furthermore,
if #1 i1s known to be real then the noticer attached to x5 continually restrict the upper bound of x;
to be no higher than the upper bound of x5 and the lower bound of #; to be no lower than the lower
bound of x#5. The noticer of x5 performs a symmetric restriction on the bounds of #; if it is known to
be real. Restricting two values x; and x5 to not be equal is also performed by attaching noticers to z
and z5. These noticers however, do not restrict the domains or ranges of z; or 3. They simply monitor
their continually restrictions and fail when any assertion causes z; to be known to be equal to z5. See
section 6 for a discussion of variable upper and lower bounds, and domains.

22

real-abovev low [Deterministic Function)

Returns a real variable whose value is constrained to be greater than or equal to low. The expression
(real-above low) is an abbreviation for:

(let ((v (make-variable)))
(assert! (realv v))
(assert! (>=v v low))

v)

real-belowv high [Deterministic Function)

Returns a real variable whose value is constrained to be less than or equal to high. The expression
(real-belowv high) is an abbreviation for:

(let ((v (make-variable)))
(assert! (realv v))
(assert! (<=v v high))

v)

real-betweenv low high [Deterministic Function)

Returns a real variable whose value is constrained to be greater than or equal to low and less than
or equal to high. If the resulting real variable 1s bound, its value is returned instead. Fails if it is
known that low is greater than high at the time of call. The expression (real-betweenv low high) is
an abbreviation for:

(let ((v (make-variable)))
(assert! (realv v))
(assert! (>=v v low))
(assert! (<=v v high))
(value-of v))

integer-abovev low [Deterministic Function)

Returns an integer variable whose value is constrained to be greater than or equal to low. The expression
(integer-above low) is an abbreviation for:

23

(let ((v (make-variable)))
(assert! (integerv v))
(assert! (>=v v low))

v)

integer-belowv high [Deterministic Function)

Returns an integer variable whose value is constrained to be less than or equal to high. The expression
(integer-belowv high) is an abbreviation for:

(let ((v (make-variable)))
(assert! (integerv v))
(assert! (<=v v high))

v)

integer-betweenv low high [Deterministic Function)

Returns an integer variable whose value is constrained to be greater than or equal to low and less
than or equal to high. If the resulting integer variable is bound, its value is returned instead. Fails
if 1t is known that there is no integer between low and high at the time of call. The expression
(integer-betweenv low high) is an abbreviation for:

(let ((v (make-variable)))
(assert! (integerv v))
(assert! (>=v v low))
(assert! (<=v v high))
(value-of v))

member-ofv sequence [Deterministic Function)

Returns a variable whose value is restricted to be a member of sequence. If sequence is a singleton and
the resulting variable would be bound, its value is returned instead. Fails if sequence i1s empty. The
expression (member—ofv sequence) is an abbreviation for:

(let ((v (make-variable)))
(assert! (memberv v sequence))
(value-of v))

24

notv z [Deterministic Function)

Restricts # to be boolean (see section 8). Returns nil if # is known to equal t after this restriction.
Returns t if = is known to equal nil after this restriction. If it is not known whether z equals t or nil
then notv creates and returns a new boolean variable v. The values of and v are mutually constrained
via noticers so that v is equal to t if and only if z is known to equal nil and v is equal to nil if and only
if x 1s known to equal t. If # later becomes known to equal t then a noticer attached to x restricts v
to equal nil. Likewise, if # later becomes known to equal nil then a noticer attached to x restricts v
to equal t. Furthermore, if v later becomes known to equal t then a noticer attached to v restricts x
to equal nil. Likewise, if v later becomes known to equal nil then a noticer attached to v restricts x
to equal t. Note that notv differs from the CoMmMON LiSP primitive not in that while not accepts any
CoOMMON LISP object as input, treating any non-nil value as true, notv restricts is argument to be a
boolean value, failing if its argument cannot be restricted to be boolean.

andv z* [Deterministic Function)

Takes zero or more arguments. Restricts each argument to be boolean (see section 8). Returns t if
called with no arguments. Returns nil if any argument is known to equal nil after this restriction.
Returns t if all arguments are known to equal t after this restriction. If neither of the above conditions
hold then andv creates and returns a new boolean variable v. The values of the arguments z; and v are
mutually constrained via noticers so that v is equal to t if and only if all of the arguments #; are known
to equal t and v 1s equal to nil if and only if some argument z; is known to equal nil. If all of the
arguments z; later becomes known to equal t then noticers attached to the arguments z; restrict v to
equal t. Likewise, if some argument z; later becomes known to equal nil then a noticer attached to z;
restricts v to equal nil. Furthermore, if v later becomes known to equal nil then a noticer attached
to v restricts all of the arguments z; to equal nil. SCREAMER implements one further optimization. If
when andv is called, all of the arguments except for one, say z;, are known to equal t and it 1s not known
whether z; equals t or nil then andv returns the argument z; directly as the result. Note that andv
differs from the CoMMON LisP primitive and in two important ways. First, while and is a macro and
evaluates its arguments from left to right halting that evaluation when an argument evaluates to nil,
andv is a function which always evaluates all of its arguments. Since andv is a function however, it can
be funcalled and mapped, something which cannot be done with and since it is a macro. Second, while
and accepts any COMMON LIsP object as input, treating any non-nil value as true, andv restricts its
arguments to be boolean values, failing if any argument cannot be restricted to be boolean.

orv z* [Deterministic Function)

Takes zero or more arguments. Restricts each argument to be boolean (see section 8). Returns nil
if called with no arguments. Returns t if any argument is known to equal t after this restriction.
Returns nil if all arguments are known to equal nil after this restriction. If neither of the above

25

conditions hold then orv creates and returns a new boolean variable v. The values of the arguments z;
and v are mutually constrained via noticers so that v i1s equal to nil if and only if all of the arguments z;
are known to equal nil and v is equal to t if and only if some argument z; is known to equal t. If all of
the arguments z; later becomes known to equal nil then noticers attached to the arguments z; restrict v
to equal nil. Likewise, if some argument z; later becomes known to equal t then a noticer attached to z;
restricts v to equal t. Furthermore, if v later becomes known to equal t then a noticer attached to v
restricts all of the arguments z; to equal t. SCREAMER implements one further optimization. If when
orv is called, all of the arguments except for one, say z;, are known to equal nil and it is not known
whether z; equals t or nil then orv returns the argument z; directly as the result. Note that orv differs
from the COMMON Lisp primitive or in two important ways. First, while or is a macro and evaluates its
arguments from left to right halting that evaluation when an argument evaluates to t, orv is a function
which always evaluates all of its arguments. Since orv is a function however, it can be funcalled and
mapped, something which cannot be done with or since it is a macro. Second, while or accepts any
CoMMON LisP object as input, treating any non-nil value as true, orv restricts its arguments to be
boolean values, failing if any argument cannot be restricted to be boolean.

+v z* [Deterministic Function)
-y 2t [Deterministic Function)
v o [Deterministic Function)
/v xt [Deterministic Function)
minv zt [Deterministic Function)

26

maxv xt [Deterministic Function)

funcallv function z* [Deterministic Function)

The argument function must be bound to a deterministic CoMMON LisP function object. Returns the
result of funcalling function on the dereferenced values of the arguments z; if all of the z; are bound when
funcallv is called. If some of the arguments z; are not bound when funcallv is called then funcallv
creates and returns a variable v. The arguments x; and v are mutually constrained via noticers so that if v
and the arguments «; ever all become bound then v is restricted to equal the result of funcalling function
on the dereferenced values of the arguments ;. The noticers furthermore implement forward checking,
i.e. if the collection v combined with the arguments z; all become bound, save one variable, and this
one variable has a finite domain then this domain is restricted to contain only those elements which are
consistent with the values of the remaining bound variables. The following is a standard cliché used to
constrain the variables z; ...z, to obey a given predicate:

(assert! (funcallv #’(lambda (xi...x,) predicate) xy...xp))

applyv function =t [Deterministic Function)

The argument function must be bound to a deterministic CoMMON LisP function object. Returns the
result of applying function on the dereferenced values of the arguments z; if all of the #; are bound when
applyv is called. If some of the arguments z; are not bound when applyv is called then applyv creates
and returns a variable v. The arguments z; and v are mutually constrained via noticers so that if v
and the arguments z; ever all become bound then v is restricted to equal the result of applying function
on the dereferenced values of the arguments ;. The noticers furthermore implement forward checking,
i.e. if the collection v combined with the arguments z; all become bound, save one variable, and this
one variable has a finite domain then this domain is restricted to contain only those elements which are
consistent with the values of the remaining bound variables.

equalv z y [Deterministic Function)

Returns t if the aggregate object x is known to equal the aggregate object y when equalv is called.
Returns nil if the aggregate object z is known not to equal the aggregate object y when equalv is
called. If it is not known whether or not z equals y when equalv is called then equalv creates and
returns a boolean variable v. The values of x, y and v are mutually constraints via noticers so that v

27

equals t if and only if # 1s known to equal y and v equals nil if and only if is known not to equal y.
Noticers are attached to v as well as to all variables nested in both in # and y. When the noticers
attached to variables nested in x and y detect that x is known to equal y they restrict v to equal t.
Likewise, when the noticers attached to variables nested in # and y detect that x is known not to equal y
they restrict v to equal nil. Furthermore, if v later becomes known to equal t then x and y are unified.
Likewise, if v later becomes known to equal nil then x and y are restricted to not be equal. This is
accomplished by attaching noticers to the variables nested in « and y which detect when z becomes
equal to y and fail. The expression (known? (equalv z y)) is analogous to the extra-logical predicate
== typically available in PROLOG. The expression (known? (notv (equalv z y))) is analogous to the
extra-logical predicate \= typically available in PROLOG. The expression (assert! (equalv z y)) is
analogous to PROLOG unification. The expression (assert! (notv (equalv z y))) is analogous to
the disunification operator available in PROLOG-II. See section 9 for a discussion of aggregate objects.

bound? x [Deterministic Function)

Returns t if z is not a variable or if z is a bound variable. Otherwise returns nil. Bound? is analogous to
the extra-logical predicates var and nonvar typically available in PROLOG. See section 7 for a discussion
of how SCREAMER determines whether or not a variable is bound.

value-of [Deterministic Function)

Returns x if x is not a variable. If z is a variable then value-of dereferences x and returns the
dereferenced value. If x is bound then the value returned will not be a variable. If # is unbound then
the value returned will be a variable which may be x itself or another variable which is shared with x.
See section 7 for a discussion of how SCREAMER determines whether or not a variable is bound and how
SCREAMER dereferences variables.

ground? x [Deterministic Function)

The primitive ground? is an extension of the primitive bound? which can recursively determine whether
an entire aggregate object is bound. Returns t if 2 is bound and either the value of z is atomic or all of
the slots in the value of # are also bound. Otherwise returns nil. See section 7 for a discussion of how
SCREAMER determines whether or not a variable is bound. See section 9 for a discussion of aggregate
objects.

28

apply-substitution =z [Deterministic Function)

The primitive apply-substitution is an extension of the primitive value-of which can recursively
dereference an entire aggregate object. If # is an unbound variable then apply-substitution behaves
like value-of dereferencing « and returning the dereferenced value. The value returned will be a variable
which may be z itself or another variable which is shared with z. Otherwise, returns a copy of the value
of . Each slot of x that contains a bound variable is replaced in the copy with the dereferenced value of
that variable produced by a recursive application of apply-substitution. See section 7 for a discussion
of how SCREAMER determines whether or not a variable is bound and how SCREAMER dereferences
variables. See section 9 for a discussion of aggregate objects.

linear-force [Nondeterministic Function)

Returns z if # is not a variable. If z is a bound variable then behaves like value-of returning the
dereferenced value of . If z is an unbound variable then it must be known to have a countable set of
potential values. In this case # is nondeterministically restricted to be equal to one of the values in this
countable set, thus forcing = to be bound. The dereferenced value of x is then returned. An unbound
variable is known to have a countable set of potential values either if it is known to have a finite domain
or if it is known to be integer valued. An error is signalled if z is not known to have a finite domain and
is not known to be integer valued. Upon backtracking z will be bound to each potential value in turn,
failing when there remain no untried alternatives. Since the set of potential values is required only to be
countable, not finite, the set of untried alternative may never be exhausted and backtracking need not
terminate. This can happen, for instance, when « is known to be an integer but lacks either an upper
of lower bound. The order in which the nondeterministic alternatives are tried is left unspecified to give
future implementations leeway in incorporating heuristics in the process of determining a good search
order. See section 6 for a discussion of restriction to finite domains and to integer values. See section 7
for a discussion of how SCREAMER determines whether or not a variable is bound and how SCREAMER
dereferences variables.

divide-and-conquer-force x [Nondeterministic Function)

Returns z if # is not a variable. If z is a bound variable then behaves like value-of returning the
dereferenced value of . If # is an unbound variable then it must be known either to have a finite
domain or to be real and have a lower and upper bound. If it is known to have a finite domain d
then this domain is split into two halves and the value of z is nondeterministically restricted to be a
member one of the halves. If x becomes bound by this restriction then its dereferenced value is returned.
Otherwise, x itself 1s returned. The method of splitting the domain into two halves is left unspecified
to give future implementations leeway in incorporating heuristics in the process of determining a good
search order. All that is specified is that if the domain size is even prior to splitting, the halves are
of equal size, while if the domain size 1s odd, the halves differ in size by at most one. If z is not

29

known to have a finite domain but is known to be real and to have both lower and upper bounds then
nondeterministically either the lower or upper bound is restricted to the midpoint between the lower and
upper bound. This restriction will cause x to become bound if the difference between the lower and upper
bounds becomes smaller than *fuzz*. If x becomes bound by this restriction then its dereferenced value
is returned. Otherwise, z itself is returned. An error is signalled if z is not known to be restricted to a
finite domain and either is not known to be real or is not known to have both a lower and upper bound.
Divide-and-conquer-force implements a single binary-branching step of a divide-and-conquer search
algorithm. There are always two alternatives, the second of which is tried upon backtracking. While
a single application of divide-and-conquer-force may not cause its argument to be bound, repeated
application is guaranteed to eventually bind its argument so long as *fuzz# is non-zero. See section 6
for a discussion of restriction to finite domains and to real values. See section 7 for a discussion of how
SCREAMER determines whether or not a variable is bound and how SCREAMER dereferences variables.

static-ordering force-function [Deterministic Function)

This function is a higher-order function which takes a force-function as an argument and returns an
ordering force function as its result. The force-function is any (potentially nondeterministic) function
which can be applied to a variable as its single argument with the stipulation that a finite number
of repeated applications will force the variable to be bound. The force-function need not return any
useful value. SCREAMER currently provides two convenient force-functions, namely #’linear-force
and #’divide-and-conquer-force though future implementations may provide additional ones. The
defined SCREAMER protocol does not provide sufficient hooks for the user to define her own force fune-
tions. The ordering force function which is returned is a nondeterministic function which takes a single
argument z. This argument z can be a list of values where each value may be either a variable or
a non-variable. The ordering force function applies the force-function in turn to each of the variables
in z, in the order that they appear, repeatedly applying the force-function to a given variable until it
becomes bound before proceeding to the next variable. The ordering force function does not return any
meaningful result.

domain-size x [Deterministic Function)

Returns the domain size of #. This is the number of possible ground values which # may consistently take
on. This function recursively traverses aggregate objects when computing domain sizes. The domain
size of an aggregate object is the product of the domain sizes of its slots. An atomic non-variable has a
domain size of one. The domain size of a bound variable is the domain size of its dereferenced value. If
an unbound variable is known to have a finite domain then its domain size 1s the size of that domain. If
an unbound variable is not known to have a finite domain but i1s known to be integer valued and to have
upper and lower bounds then i1ts domain size is the one plus the difference between the upper and lower
bounds Otherwise, the domain size of an unbound variable is infinite. Domain-size returns nil if z, or
any slot nested in z, has an infinite domain size. See section 9 for a discussion of aggregate objects.

30

reorder force-function [Deterministic Function)

This function is a higher-order function which takes a force-function as an argument and returns an
ordering force function as its result. The force-function is any (potentially nondeterministic) function
which can be applied to a variable as its single argument with the stipulation that a finite number
of repeated applications will force the variable to be bound. The force-function need not return any
useful value. SCREAMER currently provides two convenient force-functions, namely #’linear-force
and #’divide-and-conquer-force though future implementations may provide additional ones. The
defined SCREAMER protocol does not provide sufficient hooks for the user to define her own force fune-
tions. The ordering force function which is returned is a nondeterministic function which takes a single
argument z. This argument x can be a list of values where each value may be either a variable or a
non-variable. The ordering force function repeatedly applies the force-function to the variable in & with
the smallest domain size until all variables in « are bound. The ordering force function does not return
any meaningful result.

solution list ordering-force-function [Nondeterministic Function)

The argument list is a list of values. Typically i1t 1s a list of variables but it may also contain non-
variables. The specified ordering-force-function is used to force each of the variables in list to be bound.
Returns a list of the dereference values of the elements of list in the same order that they appear in list,
irrespective of the forcing order imposed by the ordering-force-function. The ordering-force-function can
be any function which takes a list of values as its single argument that is guaranteed to force all variables
in that list to be bound upon its return. The returned value of the ordering-force-function is ignored.
The user can construct her own ordering-force-function or use one of the following four alternatives
provided with SCREAMER.

e (static-ordering #’linear-force),
e (static-ordering #’divide-and-conquer-force),

(reorder #’linear-force) and

e (reorder #’divide-and-conquer—force).

Future implementation of SCREAMER may provide additional forcing and ordering functions.

best-value objective-function expression [Nondeterministic Macro]

template x [Deterministic Function)

31

Copies an aggregate object, replacing any symbol beginning with a question mark with a newly created
variable. If the same symbol appears more than once in , only one variable is created for that symbol,
the same variable replacing any occurrences of that symbol. Thus (template ’(a b (7c d 7e) 7e))
has the same effect as:

(let ((?c (make-variable))
(7e (make-variable)))
(list ’a ’b (list ¢ ’d e) e)).

This is useful for creating patterns to be unified with other structures. See section 9 for a discussion of
aggregate objects.

fuzz [Variable]

The variable #fuzz* is used to determine whether a real variable is bound when it is not known to
have a finite domain. If a real value has lower and upper bounds and the difference between the lower
and upper bounds is less than *fuzz* then the variable is considered bound. When such a variable is
dereferenced, the lower bound 1s arbitrarily taken as its value. See section 6 for further discussion.

12 Examples

In this section I will present a number of examples of SCREAMER programs to illustrate typical program-
ming styles and clichés. Figure 1 contains a program for computing all Pythagorean triples of positive
integers less than or equal to n. It illustrates a simple generate-and-test paradigm. The let bindings of
the function pythagorean-triples constitute the generator while the unless expression constitutes the
test. The function integer-between nondeterministically returns an integer in the range given by its
arguments. This function is so useful that it is built into SCREAMER, though it could easily be defined
as in figure 1.

Figure 1 also contains a second program for finding pythagorean triples. While the first one uses
pure backtracking search, the second function pythagorean-triplesv uses the SCREAMER constraint
package. While for this problem, the constraint based version does not offer much computational ad-
vantage over the backtracking version, this example does illustrate a standard cliché for reformulating
generate-and-test algorithms into constraint propagation ones. Note the intentional similarity in the
names of the primitives integer-between and integer-betweenv. A similar analogy exists between
the primitives member—-of and member-ofv.

Figure 2 contains a program for solving the N-Queens problem. The function attacks returns t if
a queen on row ¢; attacks a queen on row ¢; when the queens are distance columns apart. The function
check-queens checks whether a new queen can be placed on the board without attacking the queens
already placed. It recursively checks the new queen against each previously placed queen and fails if
it detects an attack. The parameter queen gives the row of the new queen to be placed in the column
adjacent to columns of the previously placed queens. The parameter queens is a list of the rows of the
previously placed queens. Note that the functions attacks and check-queens are deterministic. The
function n-queens nondeterministically recursively places queens on the board, checking for attacks as
each queen is placed.

This example illustrates the cliché of interleaving the generate and test processes to implement early
failure detection. Rather than wait until all queens are placed before checking for attacks, consistency

32

(defun integer-between (low high)
(if (> low high) (fail) (either low (integer-between (1+ low) high))))

(defun pythagorean-triples (n)
(all-values
(let ((a (integer-between 1 n))
(b (integer-between 1 n))
(c (integer-between 1 n)))
(unless (= (+ (* a a) (* b b)) (x ¢c ¢)) (fail))
(list a b ¢))))

(defun pythagorean-triplesv (n)
(let ((a (integer-betweenv 1 n))
(b (integer-betweenv 1 n))
(¢ (integer-betweenv 1 n)))
(assert! (=v (+v (#v a a) (#v b b)) (*v c ¢)))
(all-values (solution (list a b c¢) (reorder #’divide-and-conquer-force)))))

Figure 1: Two SCREAMER programs for finding pythagorean triples. The first uses backtracking
search while the second uses the constraint package.

is checked after making each nondeterministic choice. This example also illustrates how CoMmMoN Lisp
features such as &optional arguments are available in SCREAMER.

Figure 3 contains a program for finding all simple paths in a directed graph. A simple path is one
which does not visit a vertex more than once. The graph is represented via the defstruct node. Each
node contains two slots. The marked? slot is used to record when a node has already been visited in the
path being constructed. The next-nodes slot contains a list of all of the nodes reachable from a given
node via out-edges. The function member-of is used to nondeterministically choose one of the nodes in
the next-nodes slot as the next node in the path being constructed. This function is so useful that it is
built into SCREAMER, though it could easily be defined as in figure 3. The version built into SCREAMER
is slightly more complex as it accepts either a vector or a list as its argument.

This example illustrates the utility of local side effects. Local side effects are used to mark a node as
being visited so that they are not included twice in the path. The marking is undone upon backtracking
as different paths are considered.

The function simple-path never overwrites a local side effect. As such, its side effects are single
assignment, much like PROL0OG’s binding of logic variables. SCREAMER allows multiple assignment local
side effects, something which is not possible in PROLOG. The second example in figure 3 illustrates the
utility of multiple assignment local side effects. Let us extend the definition of simple path to define
the notion of a k-simple path. A k-simple path i1s one which never visits a node more than k times.
A program for finding simple paths can be converted into one which finds k-simple paths by keeping a
visits count for each node instead of a marked? flag. Incrementing this visits count requires multiple
assignment local side effects. This example also illustrates how local side effects can be done on any
CoMMON Lisp generalized variable (such as defstruct slots) via the setf primitive.

The SCREAMER constraint package 1s implemented using the basic nondeterministic primitives pro-
vided by SCREAMER. No internals of SCREAMER needed to be modified to support the constraint package.
Had the constraint package not been provided with SCREAMER, a user could have constructed her own

33

(defun attacks (qi qj distance)
(or (= qi qj)

(= qi (+ qj distance))

(= qi (- qj distance))))

(defun check-queens (queen queens &optional (distance 1))
(unless (null queens)
(if (attacks queen (first queens) distance) (fail))
(check-queens queen (rest queens) (1+ distance))))

(defun n-queens (n &optional queens)
(if (= (length queens) n)
queens
(let ((queen (integer-between 1 n)))
(check-queens queen queens)
(n-queens n (cons queen queens)))))

(defun n-queensv (n)
(let ((q (make-array n)))
(dotimes (i n)
(setf (aref q i) (member-ofv (all-values (integer-between 1 n)))))
(dotimes (i n)
(dotimes (j n)
(if > j 1)
(assert! (notv (funcallv #’attacks (aref q i) (aref q j) (- j 1)))))))
(all-values (solution (coerce q ’list) (reorder #’linear-—force)))))

Figure 2: Two SCREAMER programs for solving the N-Queens problem. The first uses backtracking
search while the second uses the constraint package.

34

(defun member-of (list)
(if (null 1list) (fail) (either (first list) (member-of (rest list)))))

(defstruct (node (:conc-name nil) (:print-function print-node))
name next-nodes (marked? nil) (visits 0))

efun print-node (node stream print-leve
(defun pri de (nod print-level)
(declare (ignore print-level))

(princ (name node) stream))

(defun simple-path (u v)
(if (marked? u) (fail))
(local (setf (marked? u) t))
(either (progn (unless (eq u v) (fail)) (list u))
(cons u (simple-path (member-of (next-nodes u)) v))))

(defun k-simple-path (u v k)
(if (= (visits u) k) (fail))
(local (setf (visits u) (1+ (visits u))))
(either (progn (unless (eq u v) (fail)) (list u))
(cons u (k-simple-path (member-of (next-nodes u)) v k))))

Figure 3: A SCREAMER program for finding simple paths in a graph.

35

using nothing more than the facilities already provided by CoMMON Lisp and the non constraint pack-
age portions of SCREAMER. This is in striking contrast to constraint logic programming languages which
cannot be implemented efficiently on top of existing PROLOG implementations but rather necessitate
creating a new language implementation.

To illustrate the essential organization of the constraint package and how it is implemented on top of
nondeterministic COMMON Lisp, figure 4 contains a greatly simplified version of the constraint package
which supports only boolean constraints. This version is thus analogous to what is commonly called
a truth maintenance system or TMS. Variables have two slots, a value which is either t, nil or
:unassigned, and a list of noticers, procedures to be called to perform constraint propagation when
a variable is assigned a value. The functions notv and andv take variables as arguments and create and
return a new variable constrained by the appropriate relation to the arguments. The constraints are
implemented via noticers attached both to the argument and result variables. The function set-value is
used to set the value of a variable. It first checks whether the variable can be set to the given value, failing
if it cannot. If the variable was not previously bound, set-value calls its noticers after setting its value
in order to perform constraint propagation. Note that the functions notv, andv and set-value are all
deterministic. This is in keeping with the requirement that constraint propagation be a fast operation.
Nonetheless, it is an incomplete method for finding solutions to propositional satisfiability problems.
Many truth maintenance systems rely solely on constraint propagation and are thus incomplete. Figure 4
shows how a TMS built in SCREAMER can circumvent this problem by providing a hook into backtracking
search. The function solution is such a hook which nondeterministically assigns values to unassigned
variables, interleaving constraint propagation with each assignment. The final expression in figure 4
shows how this TMS can be used to find all solutions to any propositional satisfiability problem.

Figure 5 contains a program for learning the syntactic categories of words appearing in a corpus of
sentences. It is a problem first proposed and solved by Rayner et al. (1988). The basic idea is that you
are presented with a context free grammar and a corpus of sentences generated by that grammar but do
not know the syntactic categories of the words appearing in the corpus. One can find a lexicon mapping
words to categories by nondeterministically enumerating all possible mappings and filtering out the ones
which do not allow the sentences to be parsed by the grammar. The key to making this tractable is to
order the search so as to delay the process of making nondeterministic choices for lexical entries for as
long as possible.

Figure 5 shows a SCREAMER version of the original PROLOG solution. The variable *grammar*
contains a list of context free rules. The function 1hs returns the category on the left hand side of a
rule while the function rhs returns the list of categories forming the right hand side of a rule. The
function parse returns t if a list of words can be parsed as a phrase of a given category and fails
otherwise. It is essentially a simple top-down left-to-right nondeterministic parser. It calls parse-rule
which nondeterministically tries to parse the words using every grammar rule which contains category
as its left hand side. The core of the parser is the function parse-categories. It takes the right hand
side of a rule and nondeterministically splits a list of words into sub-phrases to assign to each category
in the right hand side, in every possible way, and attempts to recursively parse each sub-phrase.

So far this is a straightforward parser. Nothing about this parser is particular to the problem of
category acquisition. The first definition for the function category completes the definition of this
parser. By replacing this definition with the second one, the parser i1s transformed into a language
acquisition device. While the first definition returns the categories associated with a word derived from
a pre-existing lexicon, the second definition creates that lexicon on the fly. It enforces the monosemy
constraint by returning the category of a word which is already in the lexicon. New lexical entries
are added as new words are encountered, nondeterministically assigning categories to each new word.
Notice how lexical entries are added by performing local side effects to a hash table, something possible in
SCREAMER but not in PROLOG. The last expression in figure 5 illustrates how to solve a given category
acquisition puzzle by forming a series of calls to the parser, one for each sentence in the corpus, and

36

(defstruct (boolean-variable (:conc-name nil)) (value :unassigned) noticers)

(defun notb (x)
(let ((z (make-boolean-variable)))
(local (push #’(lambda () (set-value x (not (value z)))) (noticers z))
(push #’ (lambda () (set-value z (not (value x)))) (noticers x)))
z))

(defun andb (x y)
(let ((z (make-boolean-variable)))
(local
(push #’ (lambda ()
(cond ((value x)
(unless (eq (value y) :unassigned) (set-value z (value y)))
(unless (eq (value z) :unassigned) (set-value y (value z))))
(t (set-value z nil))))
(noticers x))
(push #’ (lambda ()
(cond ((value y)
(unless (eq (value x) :unassigned) (set-value z (value x)))
(unless (eq (value z) :unassigned) (set-value x (value z))))
(t (set-value z nil))))
(noticers y))
(push #’ (lambda ()
(cond ((value z) (set-value x t) (set-value y t))
(t (if (eq (value x) t) (set-value y nil))
(if (eq (value y) t) (set-value x nil)))))
(noticers z))

z)))
(defun orb (x y) (notb (andb (notb x) (notb y))))

(defun set-value (variable value)

(cond ((eq (value variable) :unassigned)
(local (setf (value variable) value))
(dolist (noticer (noticers variable)) (funcall noticer)))
(t (unless (eq (value variable) value) (fail)))))

(defun boolean-solution (variables)
(if (null variables)
()
(let ((variable (first variables)))
(when (eq (value variable) :unassigned)
(set-value variable (either t nil)))
(cons (value variable) (boolean-solution (rest variables))))))

(defun sat-problem ()
(all-values
(let ((x (make-boolean-variable))
(y (make-boolean-variable))
(z (make-boolean-variable)))
(set-value (andb (orb x (notb y)) (orb y (notb z))) t)
(boolean-solution (list x y z)))))

Figure 4: A SCREAMER program for solving propositional satisfiability problems using a combination
of constraint propagation and backtracking search.

(defvar *grammar* ’((s np vp)
(np det n)
(np n)
(vp v)
(vp v np)
(vp v np np)
(vp v pp)
(vp v np pp)
(pp p np)))

(defun lhs (rule) (car rule))
(defun rhs (rule) (cdr rule))

(defun categories (grammar)
(remove-duplicates
(set-difference (reduce #’append grammar) (mapcar #’first grammar)
1test #’eq)
itest #’eq))

(defun parse-categories (categories wordsl &optional words2)
(if (null categories)
(if (and (null wordsi) (null words2)) t (fail))
(either (progn (parse (first categories) words1)
(parse-categories (rest categories) words2))
(if (null wordsl)
(fail)
(parse-categories
categories
(reverse (rest (reverse wordsl)))
(append (last wordsl) words2))))))

(defun parse-rule (category words rules)
(if (null rules)
(fail)
(either (if (eq (lhs (first rules)) category)
(parse-categories (rhs (first rules)) words)
(fail))
(parse-rule category words (rest rules)))))

(defun parse (category words)

(if (null (rest words))
(if (eq category (category (first words))) t (fail))
(parse-rule category words *grammar*)))

(defun category (word) (member-of (categories word)))

(defun category (word)
(declare (special lexicon))
(let ((category (gethash word lexicon)))
(if category 38
category
(local (setf (gethash word lexicon)
(member-of (categories *grammar#*)))))))

(defun grow-up ()

backtracking until a solution is found.

Siskind (1990) extended the work of Rayner et al. (1988) in a number of ways. One important
extension was using a constraint propagation based method rather than a pure backtracking method to
solve the puzzle. The key 1deas behind this method are illustrated in figure 6. This is a greatly simplified
version of the program described in Siskind (1990).® This program was derived from the program in
figure 5 by changing only those parts that appear in upper case letters. Like the program in figure 1,
this illustrates a typical cliché for converting backtracking programs into constraint propagation based
ones. In the derived program, the functions parse-categories, parse-rule, parse and category are
all deterministic. They read in a corpus and construct a large constraint network corresponding to the
category acquisition puzzle. The last expression in figure 6 triggers the constraint solving process. It is
the only nondeterministic expression in the program.

Crossword puzzles are an interesting problem for illustrating constraint satisfaction techniques. Con-
sider the problem of consistently fitting a subset of a given set of words into a given crossword puzzle
without the clues. Figure 7 shows a sample crossword puzzle and set of words. Puzzles such as these
can easily be solved using the SCREAMER constraint package. Figure 9 gives a SCREAMER program for
solving crossword puzzles. A variable is created for each across and down entry which we will call place-
ments. Each variable is given a fixed domain ranging over all words of the requisite length. A constraint
is established for each pair of variables that represents two intersecting placements to enforce the require-
ment that they contain the same letter at their intersection point. The function crossword-variables
creates the variables and asserts the constraints between them. It is a deterministic function. The
function crosswordv is a nondeterministic function which initiates the search for a solution.

The arithmetic constraint primitives of the SCREAMER constraint package can be used to find solu-
tions to complex systems of nonlinear equations and inequalities over the reals, as well as integer program-
ming problems. Figures 10 illustrates how this can be done. Problems over the reals must be solved using
static-ordering and divide-and-conquer-force. Integer programming problems can be solved us-
ing either static-orderingor reorder as well as either linear-force or divide-and-conquer-force
though the later usually will yield better performance.

Our final example is an illustration of a standard cliché for translating ProLOoG programs into
SCREAMER. Figure 11 shows the standard append function in ProLoG, along with a translation of
that PROLOG program into SCREAMER. Automation of this translation is quite straightforward. A
future release of SCREAMER will have a facility for doing this. This will allow complete inter-operability
between CoMMON Lisp and PROLOG.

13 Using Screamer

You must include the following three expressions at the top of every file which uses SCREAMER.

(in-package :my-package)
(use-package ’(:lisp :screamer))
(shadowing-import ’(screamer::defun))

You may replace :my-package with the desired package name for your file and have that package use
any other packages that you wish. SCREAMER must be loaded into your COMMON LiSP environment
before you attempt to compile or load any file which uses SCREAMER.

8The program described in Siskind (1990) was written prior to the development of SCREAMER. Siskind (1991) de-
scribes continued work along these lines, including a newer program which is written in SCREAMER, though it uses only
nondeterministic LisP and not the constraint package.

39

(defun parse-categoriesv (categories wordsl &optional words2)
(if (null categories)
(if (and (null wordsl) (null words2)) t NIL)
(ORV (progn (parsev (first categories) words1)
(parse-categoriesv (rest categories) words2))
(if (null wordsl)
NIL
(parse-categoriesv
categories
(reverse (rest (reverse wordsl)))
(append (last wordsl) words2))))))

(defun parse-rulev (category words rules)
(if (null rules)
NIL
(ORV (if (eq (lhs (first rules)) category)
(parse-categoriesv (rhs (first rules)) words)
NIL)
(parse-rulev category words (rest rules)))))

(defun parsev (category words)

(if (null (rest words))
(EQUALV CATEGORY (CATEGORYV (FIRST WORDS)))
(parse-rulev category words *grammar*)))

(defun categoryv (word)
(declare (special lexicon))
(let ((category (gethash word lexicon)))
(if category
category
(setf (gethash word lexicon) (MEMBER-OFV (categories *grammar*))))))

(defun grow-upv ()
(let ((lexicon (make-hash-table :test #’eq)))
(declare (special lexicon))
(ASSERT! (ANDV (parsev ’s ’(the cup slid from john to mary))
(parsev ’s ’(john walked to the table))))
(all-values
(FUNCALL (REORDER #’LINEAR-FORCE)
(ITERATE (FOR (WORD CATEGORY) IN-HASHTABLE LEXICON)
(DECLARE (IGNORE WORD))
(COLLECT CATEGORY)))
(iterate (for (word category) in-hashtable lexicon)
(format t "%5: §" word category)))))

Figure 6: A constraint-based SCREAMER program for learning the syntactic categories of words.

40

ad al alas aloha art at

atl bags bang base bore coat
dad dart dime dine dive do

eh elf er evade even fan
fee fine gate goat happy hares
hem hide hire hive hoe hone
inn largest learned lee lemons lid
lilac lip lo load mates mile
mirror mist moon more oak olive
ore pans paris pay pea pedal
penny pier pile pins pits raise
rips roe ropes roy salads see
slam slat some spot steer stew
tag tame tan tank tea tee
tie tigers tire to toe wager
wave wider win wires

Figure 7: A sample crossword puzzle which can be solved by the the program in figure 8.

41

(defun row (placement) (first placement))

(defun column (placement) (second placement))

(defun direction (placement) (third placement))

(defun placement-length (placement) (fourth placement))

(defun intersect? (placementl placement2)
(and
(not (eq (direction placementl) (direction placement2)))
(if (eq (direction placementl) ’across)
(and (>= (row placementl) (row placement2))
(<= (row placement1)
(+ (row placement2) (placement-length placement2) -1))
(>= (column placement2) (column placementl))
(<= (column placement?2)
(+ (column placementl) (placement-length placementl) -1)))
(and (>= (row placement2) (row placementl))
(<= (row placement2)
(+ (row placementl) (placement-length placementl) -1))
(>= (column placementl) (column placement2))
(<= (column placementl)
(+ (column placement2) (placement-length placement2) -1))))))

(defun consistent-placements?
(placementl placement2 placementl-word placement2-word)
(or (not (intersect? placementl placement2))
(if (eq (direction placementl) ’across)
(char= (aref placementl-word
(- (column placement2) (column placementl)))
(aref placement2-word
(- (row placementl) (row placement2))))
(char= (aref placement2-word
(- (column placementl) (column placement2)))
(aref placementil-word
(- (row placement2) (row placement1)))))))

(defun word-of-length (n dictionary)
(if (null dictionary)
(fail)
(if (= (length (first dictionary)) n)
(either (first dictionary) (word-of-length n (rest dictionary)))
(word-of-length n (rest dictionary)))))

(defun check-placement (placement word solution)
(dolist (placement-word solution)

(if (not (consistent-placements?

(first placement-word) placement (second placement-word) word))
(fail))))
42

(defun choose-placement (placements solution)
(block exit

(dolist (placement placements)

(if (some #’(lambda (placement-word)

(intersect? (first placement-word) placement))

(defun crossword-variables (placements dictionary)
(iterate
(with variables =
(iterate
(for placement in placements)
(collect
(member-ofv
(all-values
(let ((word (member-of dictionary)))
(unless (= (length word)
(placement-length placement))

(fail))
word))))))
(for (variablel . remaining-variables) on variables)
(for (placementl . remaining-placements) on placements)

(iterate
(for variable2 in remaining-variables)
(for placement2 in remaining-placements)
(if (intersect? placementl placement?2)
(let ((placementl placementl)
(placement2 placement?2))
(assert!
(funcallv #’(lambda (wordl word2)
(consistent-placements?
placementl placement2 wordl word2))
variablel
variable2)))))
(finally (return variables))))

(defun crosswordv (placements dictionary)
(mapcar #’list
placements
(solution (crossword-variables placements dictionary)
(reorder #’linear-force))))

Figure 9: A constraint-based Screamer program for solving crossword puzzles.

43

(one-value
(let ((x (real-betweenv -1e40 1e40))
(y (real-betweenv -1e40 1e40))
(z (real-betweenv -1e40 1e40)))
(assert! (andv (orv (=v (+v (*v 4 x x y)
(v 7y z 2)
(* 68 xx 2z z))
2)
(=v (+v (*v 3 x y)
(*v 2y y)
(*v 5 x y 2))
-4))
G=v (xv (+v x y) (+v y 2)) -5))))
(solution (list x y z) (static-ordering #’divide-and-conquer-force)))

Figure 10: A SCREAMER program for solving nonlinear inequalities.

append([1,x,x).
append([alx],y, [alz]):-append(x,y,z).

(defun prolog-append (x y z)
(either (progn (assert! (equalv x nil))
(assert! (equalv y z)))
(let ((x1 (make-variable))
(y1 (make-variable))
(z1 (make-variable))
(a (make-variable)))
(assert! (equalv x (comns a x1)))
(assert! (equalv y y1))
(assert! (equalv z (cons a z1)))
(prolog-append x1 y1 z1))))

(defun split-list ()
(all-values
(let ((x (make-variable))
(y (make-variable)))
(prolog-append x y ’(a b ¢ d))
(print (1list x y)))))

Figure 11: A method for translating PROLOG programs into SCREAMER

44

(6
(7
(8
(9
10
11

)
)
)
)
(10)
(11)
(12)
3)

(1

[(either)]. ~ (throw 'fail nil)
[(eithere)]. ~ [e].
[(eitherei...ey)]. ~ (let((ac))
(catch *fail [eq],)
.(catch "fail [ep—1],)
[en].)
[(fail)]. ~ (throw 'fail nil)
[(nondeterministic-setfve)]. ~ [e] (A(d)
(Let((bv))
(unwind-protect
(progn (setf v d) (funcall c d))
(setq v b))))
[(quote z)]. ~» (funcall ¢ (quote z))
[(function z)]. ~+ (funcall ¢ (function z))
[(progn)]. ~ (funcall ¢nil)
[(prognel)l. ~ [al
[(progn i ea)le ~ [etdny o)
[(setque)]l. ~ [6](>\)y (setqu d) (funcall ¢ d))
[(if €1 ez es)]. ~ (Let((a c)) [er](n(a) (if d feal, [es],))
[(fer...en)]. ~ [edl] (A1) - enran) (e dra.) when f is nondeterministic
(Ferelle = 1] (@) - fenlna puncatt e o, agy) T determintd

[#]. ~ (funcall ¢ z)whenzis a variable or is self evaluating

Table 1: Some of the CPS conversion rules used by SCREAMER.

14 TImplementation

SCREAMER implements backtracking by performing CPS (Continuation Passing Style) conversion on
expressions in nondeterministic contexts. Without CPS conversion, returning values from functions
is handled by the underlying Lisp function return mechanism. A CPS converted expression returns
its value by calling a continuation with the returned value as its single argument. This frees up the
underlying LisP function return mechanism to be usurped to handle backtracking. Thus in SCREAMER,
a nondeterministic function fails by returning and returns by calling its continuation.

If e and ¢ are non-CPS-converted expressions expressions, we denote by [e]., the CPS conversion of
e so that it calls the continuation denoted by ¢ with its result. Some of the transformations rules for
performing CPS conversion of expressions allowed in nondeterministic contexts is given in table 1.

Some comments pertaining to these CPS conversion rules are worthwhile. First, any variable in
italics appearing on the right hand side of a rule and not the left hand side denotes a new uninterned
symbol created by gensym. Second, rules 3 and 12 introduce new variables a to factor out the common
continuation subexpression and avoid the potential exponential growth in expression size that would

45

(15)

occur if such common subexpression factoring were not performed. As an optimization, if this variable
a would only rename another created variable, then the let introducing a is §-converted. Third, while
backtracking could have been implemented as simple function return, instead choice points are set up
as catch frames with the tag fail and backtracking is implemented via a throw to the most recent
catch frame named fail. Presumably, unwinding a stack via throw is faster than returning through
all of the intermediate frames. Fourth, the dummy variables d;...d,_1 in rule 10 are never used.
To avoid being flagged with warnings by some CoOMMON LIiSP compilers, they are declared as ignore
variables. Fifth, all of the closures created by the lambda expressions created by the CPS conversion
can be stack allocated by CoMmMoON Lisp compilers which provide such a capability. As the Symbolics
compiler supports stack allocated closures only when lambda expression are declared as such via the
declaration sys:downward-function, such a declaration is added to all lambda expressions generated
by CPS conversion.”

The CPS converter performs one additional optimization. Stated in their simple form given in table 1,
the CPS conversion rules generate a great deal of redundant lambda expressions which immediately
get funcalled. To remove such redundant lambda expressions, the CPS converter incorporates a -
conversion rule. The let bindings for the variable a created by rules 3 and 12 can sometimes thwart
the B-conversion optimization. The aforementioned optimization whereby let bindings which simply
bind a to a previously created variable are S-converted may circumvent this thwarting and allow further
[-conversion by the current rule.

The actual implementation uses a more efficient CPS conversion algorithm. First, it performs a
more efficient CPS conversion on special forms which have only deterministic sub-expressions. Second,
it performs a more efficient CPS conversion for the special forms if, progn and setq when it can be
shown that their values are not being used and they are only being called for side effect.

15 Intellectual Heritage

Nondeterministic LisP is not new. The addition of a nondeterministic choice operator (once called
amb) to Lisp dates back to McCarthy (1963). Clinger (1982) discusses the difficulties involved in
giving a formal semantics to a nondeterministic choice operator in LisP. DEPENDENCY DIRECTED
Lisp (also known as pDL) (Chapman, unpublished) was an implementation of nondeterministic Lisp
used to implement TWEAK (Chapman, 1985), a non-linear constraint-posting planner. DDL recorded
dependency information during execution to support selective backtracking. SCHEMER (Zabih, 1987;
Zabih, McAllester and Chapman, 1987; Zabih, McAllester and Chapman, forthcoming) was an inter-
preter for nondeterministic SCHEME that recorded and analyzed dependency information to perform
both selective backtracking and lateral pruning. SCHEMER and DDL were both interpreters to support
retaining the dependency information needed for intelligent backtracking. Because SCREAMER uses
chronological backtracking, it can macro-expand into ordinary CoOMMON Lisp which is then compiled
into efficient code. LAMBEX (McAllester, unpublished) and new ONTIC (McAllester, unpublished) are
dialects of LisP which incorporate a nondeterministic choice operator. They are intended to be used
as a declarative input language for stating theorems to a proof checker and no operational evaluators
have been constructed for them. Haynes (1987) describes how a nondeterministic choice operator can
be added to SCHEME using the call/cc function.

The techniques used for implementing backtracking in SCREAMER are analogous to those used when
compiling PrRoLoG into Lisp (Kahn, 1982; Kahn, 1983; Kahn and Carrlson, 1984; Siskind, 1989). CPS
conversion was used in the RABBIT compiler for SCHEME (Steele and Sussman, 1976; Steele, 1977).

9Since efficient CPS conversion relies on being able to stack allocate closures to avoid needing to garbage collect the
many closures created during the execution of nondeterministic functions, in would be nice if COMMON LisP incorporated
the option of a sys:downward-function declaration as a standard feature.

46

Constraint solvers based on forward checking (sometimes called constraint propagation) also have
a long history. Some of the earliest and best known of such systems were SKETCHPAD (Sutherland, 1963),
THINGLAB (Borning, 1979), CoNsys (Steele, 1980; Sussman and Steele, 1980) and MAGRITTE (Gosling, 1983).
Since constraint propagation is an incomplete technique for solving systems of constraints, systems such
as these which rely primarily on constraint propagation are incapable of solving many problems they are
given. The constraint handling mechanism used in SCREAMER was adapted from the one used in CHIP
(Van Hentenryck, 1989). The novel approach taken by CHIP and SCREAMER is to combine backtracking
search with constraint propagation to yield a complete constraint solver. Unlike CHIP which uses linear
programming techniques to solve systems of numeric constraints, SCREAMER uses range propagation and
supports a divide and conquer approach to solving nonlinear numeric constraint problems. Van Henten-
ryck’s book gives an excellent historical overview of the development of constraint satisfaction techniques
and languages and contains an extensive bibliography of that field.

16 Obtaining Screamer

SCREAMER 1s intended to be portable and should run under any CoMMON LisP implementation. At the
M. I. T. Artificial Intelligence laboratory, the source code for SCREAMER is available from the file:

/src/local/lisplib/src/screamer/screamer.lisp

Compiled code for various combinations of machines and CoMMON Lisp compilers is available from the

files:
/src/local/lisplib/machine/screamer. binary

where machine is the directory for storing compiled Lisp code for that architecture and binary is the
standard extension for that architecture. The following file is useful if you attempt to port SCREAMER
to a new machine or COMMON Lisp implementation:

/src/local/lisplib/src/screamer/primordial.lisp

It contains a series of examples designed to exercise SCREAMER. Simply compile that file and run the
function (prime-ordeal). It should return t if the SCREAMER port was successful and give an error
message if not. Additionally, a file containing all of the examples from this manual is available as:

/src/local/lisplib/src/screamer/screams.lisp

Finally, a postscript file containing this manual 1s available from the file:
/src/local/lisplib/doc/screamer.ps

From outside M. I. T., SCREAMER 1is available by public FTP from the host:

ftp.ai.mit.edu

in the directory:
/com/ftp/pub/screamer/

In that directory you will find the files:

screamer.lisp
primordial.lisp
screams.lisp
screamer.ps

47

You will have to compile SCREAMER yourself for whichever machine and CoMMON LiSP implementation
you use.

We maintain several mailing lists pertaining to SCREAMER. The mailing list Info-Screamer is a
channel from the developers to the users and contains announcements of enhancements and bug fixes.
To be added to that mailing list, send mail to:

Info-Screamer-Request@AI.MIT.EDU
If you detect a bug in SCREAMER please send mail to:
Bug-Screamer@AI.MIT.EDU

Please do not send mail directly to the author as the Bug-Screamer mailing list is archived separately to
aid in maintaining SCREAMER. We also ask that you report all bugs whether or not you need them fixed
and whether or not you fix them yourself. This will assist us in helping the entire user community. Finally,
we ask that you send mail to Bug-Screamer whenever you attempt to port SCREAMER to a machine
or COMMON LIsP implementation not listed at the beginning of the file screamer.lisp whether or not
that port is successful.

SCREAMER 1is available free of charge and without any restriction. All we ask is that you abide by
the above policy for sending bug reports and also send mail to Info-Screamer-Request if you obtain
a copy in any way so that we may keep track of who has obtained a copy and keep users informed of
enhancements and bug fixes by way of the Info-Screamer mailing list.

Acknowledgments

Bug-DDL@AI.MIT.EDU

References

[1] Alan Hamilton Borning. THINGLAB —A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, July 1979. Also available as Stanford Computer Science Department report
STAN-CS-79-746 and as XEROX Palo Alto Research Center report SSL-79-3.

[2] David Chapman. Dependency-Directed Lisp. Unpublished manuscript received directly from au-
thor.

[3] David Chapman. Planning for conjunctive goals. Master’s thesis, Massachusetts Institute of Tech-
nology, January 1985. Also available as M. I. T. Artificial Inteligence Laboratory Technical Report
802.

[4] W. Clinger. Nondeterministic call by need is neither lazy nor by name. In Proceedings of the ACM
Conference on LisP and Functional Programming, pages 226-234, 1982.

[6] James Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, 1983.
[6] Christopher T. Haynes. Logic continuations. Journal of Logic Programming, 4:157-176, 1987.

[7] Nevin Heintze, Spiro Michaylov, and Peter Stuckey. cLP(}) and some electrical engineering prob-
lems. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the Fourth International

Conference, pages 675-703, Cambridge, MA, May 1987. The MIT Press.

[8] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP system. In Jean-
Louis Lassez, editor, Logic Programming: Proceedings of the Fourth International Conference, pages

196-218, Cambridge, MA, May 1987. The MIT Press.

48

[9] Kenneth M. Kahn. A partial evaluator of Lisp written in PROLOG. In Proceedings of the First
Logic Programming Conference, Marseille, France, 1982.

[10] Kenneth M. Kahn. Unique features of LisP machine PRoLoG. UPMAIL Report 14, University of
Uppsala, Sweden, 1983.

[11] Kenneth M. Kahn and M. Carlsson. How to implement PROLOG on a Lisp machine. In J. A.
Campbell, editor, Implementations of PROLOG, chapter 2, pages 117-134. Ellis Horwood, Chich-
ester, 1984.

[12] David Allen McAllester. Lambex. Unpublished manuscript received directly from author.

[13] John McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg,
editors, Computer Programing and Formal Systems. Elsevier North-Holland, Amsterdam, 1963.

[14] Manny Rayner, Asa Hugosson, and Goran Hagert. Using a logic grammar to learn a lexicon.
Technical Report R88001, Swedish Institute of Computer Science, 1988.

[15] Jeffrey Mark Siskind. The culprit pointer method for selective backtracking. Master’s thesis,
Massachusetts Institute of Technology, January 1989.

[16] Jeffrey Mark Siskind. Acquiring core meanings of words, represented as Jackendoff-style conceptual
structures, from correlated streams of linguistic and non-linguistic input. In Proceedings of the
28" Annual Meeting of the Association for Computational Linguistics, pages 143156, University
of Pittsburgh, Pittsburgh, PA, June 1990.

[17] Jeffrey Mark Siskind. Dispelling myths about language bootstrapping. In The AAATI Spring Sym-
posium Workshop on Machine Learning of Natural Language and Ontology, pages 157-164, March
1991.

[18] Ivan E. Southerland. SKETCHPAD : A Man-Machine Graphical Communication System. PhD thesis,
Massachusetts Institute of Technology, January 1963.

[19] Guy Lewis Steele Jr. Debunking the “expensive procedure call” myth, or procedure call imple-
mentations considered harmful, or lambda, the ultimate goto. A. 1. Memo 443, M. I. T. Artificial
Intelligence Laboratory, October 1977.

[20] Guy Lewis Steele Jr. The Definition and Implementation of a Computer Programming Language
Based on Constraints. PhD thesis, Massachusetts Institute of Technology, August 1980. Also
avilable as M. I. T. VLSI Memo 80-32 and as M. I. T. Artificial Inteligence Laboratory Technical
Report 595.

[21] Guy Lewis Steele Jr. and Gerald Jay Sussman. Lambda, the ultimate imperative. A. I. Memo 353,
M. I. T. Artificial Intelligence Laboratory, March 1976.

[22] Gerald Jay Sussman and Guy Lewis Steele Jr. CONSTRAINTS—a language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14(1):1-39, 1980. Also available as M. 1. T. Artificial
Intelligence Laboratory Memo 502A.

[23] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge,
MA, 1989.

[24] Ramin D. Zabih. Dependency-directed backtracking in non-deterministic SCHEME. Master’s thesis,
Massachusetts Institute of Technology, January 1987.

49

[25] Ramin D. Zabih, David Allen McAllester, and David Chapman. Non-deterministic Lisp with
dependency-directed backtracking. In Proceedings of AAAI-87, pages 59-64, July 1987.

[26] Ramin D. Zabih, David Allen McAllester, and David Chapman. Dependency-directed backtracking
in non-deterministic LISP. Artificial Intelligence, 1988. Submitted for publication.

50

